
ECE244 Programming Fundamentals

Lab Assignment #2: The Make Utility

1. Objectives

The objectives of this assignment are to introduce you to the use of the Make utility.

2. Problem Statement

In this lab, you will practice the use of the Make utility to compile programs.

3. Background

In practice, a program is expressed in many source files (numbering in thousands for large
programs). All these source files must be compiled and the resulting object files linked together
to build the executable. As the program is developed, and its source files are changed, the
modified sources must be re-compiled and the resulting new object files re-linked to produce a
new executable that reflects the changes made to the sources.

However, it is often the case that changes are made only to a small number of these source files
at any given time. While it is possible to re-compile all the source files to re-generate the
executable, only the sources that changed really need to be re-compiled. Indeed, re-compiling
all the source files when there are thousands of them is very inefficient and very time
consuming. Keeping track of which files changed and need to be re-compiled can be a daunting
task. The Make utility helps a programmer by automatically figuring out which source files
changed since the executable was last built, and automatically re-compiling them. The
programmer only has to express how the executable depends on the various source files (called
make dependences) in a file called the Makefile. Make takes care of the rest.

4. Preparation

There is a tutorial on how to use the Make utility in the “Labs” section of the course’s web site.
Read through the tutorial before you go to the lab!

5. Procedure

Create a sub-directory called lab2 in your ece244 directory, using the mkdir command.
Make it your working directory. Make sure it is accessible only by you using the chmod
command.

Use a browser to download the files Main.cpp, squared.h, squared.cpp,
squareRoot.h, and squareRoot.cpp. Examine the files. They collectively implement a
very simple (almost trivial) program that prompts the user for a number and then prints the
square and the square root of the number. The functionality of the program is spread in three

The Make Utility Page 1 of 4

files. Main.cpp contains the main function, which performs I/O and calls the two functions
squared() and squareRoot(). The files squared.h, and squared.cpp are
respectively the definition (or declaration) and implementation files for squared().
Similarly, squareRoot.h, and squareRoot.cpp are respectively the definition and
implementation files for squareRoot(). Observe how the definition files of the two
modules are included in the various .cpp files.

To generate an executable for this program, each source files is compiled separately to generate
an object file, and then the object files are linked together.

First, compile Main.cpp to produce Main.o:

g++ -c Main.cpp
 (command 1)

Second, compile squared.cpp to produce squared.o:

g++ -c squared.cpp (command 2)

Third, compile squareRoot.cpp to produce squareRoot.o:

 g++ -c squareRoot.cpp (command 3)

Finally, link the three object files Main.o, squared.o, and squareRoot.o to produce the
executable Main:

 g++ Main.o squared.o squareRoot.o –o Main (command 4)

You may want to list your directory (ls command) after executing each of these commands to
see the object files generated. Execute Main to see the program working.

The above commands expose the dependences that must be expressed in a Makefile. To
generate the executable, the three object files Main.o, squared.o, and squareRoot.o
must be linked together (command 4). If any of the object files changes, this command must be
re-issued to re-generate the executable. Thus, we say that Main depends on Main.o,
squared.o, and squareRoot.o. Similarly, to generate Main.o the file Main.cpp must
be compiled (command 1). If Main.cpp changes, then command 1 must be re-executed to re-
generate Main.o (which in turn causes command 4 to be re-issued to re-generate the
executable). The same holds for squared.o and squareRoot.o.

Now that you have determined the commands necessary to compile the program, you are ready
to write the Makefile. Create a new file called Makefile and enter the following lines in it.
The → symbol indicates that the spaces you see are generated with a single tab character, not
space characters.

The Make Utility Page 2 of 4

Main: → Main.o squared.o squareRoot.o
 → g++ Main.o squared.o squareRoot.o -o Main

Main.o: → Main.cpp squared.h squareRoot.h
 → g++ -c Main.cpp

squared.o: → squared.cpp squared.h
 → g++ -c squared.cpp

squareRoot.o: → squareRoot.cpp squareRoot.h
 → g++ -c squareRoot.cpp

The line “squareRoot.o: → squareRoot.cpp squareRoot.h” expresses the
dependence of squareRoot.o on squareRoot.cpp and squareRoot.h. If any of
these two files change, then squareRoot.o must be re-generated. The command to do so is
given in the line below as: “g++ -c squareRoot.cpp”, which is command 3 above.
Similarly, the line “Main: → Main.o squared.o squareRoot.o” expresses the
dependence of the executable Main on the object files Main.o, squared.o, and
squareRoot.o. If any of these objects change, then the executable Main must be re-
generated. The command to do so is just underneath: “g++ Main.o squared.o
squareRoot.o -o Main”, which is simply command 4.

You may now experiment with the Makefile. First, cleanup the directory by deleting all the
object files and the executable you generated earlier (be careful):

 rm –i *.o Main

Now, type make at the command prompt, and observe the commands that get executed. Verify
that all the files are compiled and the executable is made.

Now you will experiment with making changes to the various source files and re-typing make
to find out what gets re-compiled. To make things simple, you will only make changes to the
comments in the various source files and save the changes. Alternatively, you can update the
timestamp of a file using the touch command (man touch). The remainder of the
assignment refers to either of these options as updating the file.

Update the file Main.cpp (i.e., make a simple change to the comments in the file and save
the file, or issue the command touch Main.cpp. Re-type make. What commands get
executed? Do all the source files get re-compiled? If you redo these steps, does the order in
which make executes its commands remain the same?

Now update the file squared.cpp. Re-type make. What commands get executed? Observe
that not all the source files get re-compiled. Only those that are affected by the change (i.e.,
squared.cpp and Main) are re-compiled.

Now update the file squareRoot.cpp. Re-type make. What commands get executed?
Observe that not all the source files get re-compiled. Only those that are affected by the change
(i.e., squareRoot.cpp and Main) are re-compiled. Why is it necessary to re-link the
objects?

The Make Utility Page 3 of 4

The Make Utility Page 4 of 4

Now update the file squared.h. Re-type make. What commands get executed? Do all the
source files get re-compiled? Why is Main.cpp re-compiled?

In all the above examples, make sure that you understand why make executes certain
commands while skipping other commands. Also, in each example, can you explain why make
executes the commands in a specific order.

6. Deliverables

Submit all components of this assignment, including the Makefile you wrote. Namely,
squared.h, squareRoot.h, squared.cpp, squareRoot.cpp, Main.cpp and
Makefile using the submitece244s command as follows:

submitece244f 2 squared.h squareRoot.h squared.cpp
 squareRoot.cpp Main.cpp Makefile

