
ECE244 Programming Fundamentals

Lab Assignment #3: A Command Parser

1. Objectives

The objective of this assignment is to provide you with practice on the use of C++ I/O
facilities and the C string library. This assignment requires you to write a command parser that
takes input from the terminal or a file, parses this input and verifies that the input is correct.
You will be using the functionality of this command parser to exercise several of the
subsequent assignments.

2. Problem Statement

You will write a command parser that provides a textual input interface to your program. The
parser should take a sequence of commands as input. Each command consists of an operation
followed by its arguments. The command and the arguments are separated by white spaces.
Your parser should process commands, handle errors in input and print output as described
below until the end of input is encountered. All input and output must be performed using C++
I/O facilities. All string manipulation must be performed using the C string library (not the
C++ string class).

3. Input, Output and Error Processing

Please read these instructions carefully.

All input should be read via standard input (cin). All output and error messages should be
printed to standard output (cout). All commands should print either one line of output or one
error message (but not both). If a command has multiple errors, only the first error during the
parsing of the command should be printed. To distinguish output from error messages, error
messages MUST begin with "Error: " and end with a period ("."). Whenever an error
message is printed, the parser should skip all input until the end of the line and then take a new
command as input from the next line, i.e., it should ignore this command. When an end-of-file
(i.e., end of input) character is pressed then the program must end. The end-of-file character is
generated on the ECF lab machines by pressing CTRL-D on the keyboard.

Recall from Section 2 above that a command consists of an operation and a sequence of zero
or more arguments. The next section describes the valid operations and their arguments. An
operation is a string. If a user types an invalid operation, then the error message “Error:
unknown command.” should be printed. Arguments are either numbers or strings. If a
number argument is expected and the user does not type a number or the number is too large to
fit into an integer (greater than 32 bits on ECF machines), then the number is considered
invalid and the error message “Error: argument is not a number.” must be
printed.

Below, the argument named stnum is an integer and it MUST be printed as a 9-digit integer.
For example "303" is printed as "000000303". If the user types a valid number (see
definition of invalid number above) but the number is larger than 9 digits, then the error
message "Error: <number> is too large." should be printed. If the user types a
negative number (i.e., number < 0), then the error message "Error: <number> is

A Command Parser Page 1 of 3

negative." should be printed. The number value in the error message is the actual
number.

You must use the cin input operator (>>) in this assignment. Do not use getline or any
function that converts strings to integers or vice versa. You can assume that the input will be
provided one command per line. The operation and the arguments will be separated by one or
more spaces or tab characters. There may be zero or more space or tab characters before the
operation or after the last argument of a command (before the newline character).

4. Commands and Arguments

The commands and their arguments are shown below. All commands are in lower case. The
operations are shown in bold and the arguments are shown in italics.

• new stnum. This command should print "New: stnum". The stnum argument is
described above.

• locate stnum. This command should print "Locate: stnum". The stnum
argument is described above.

• updatename stnum lname fname. This command should print

"Updatename: stnum fname lname". It takes three arguments. The stnum
argument is described above. The last two arguments are strings. Note the reverse
order of the last two arguments in the output. Assume that lname and fname are no
more than 80 characters long.

• updatemark stnum idx mark. This command should print "Updatemark:

stnum idx mark". This command takes three arguments all of which are numbers.
The stnum argument is described above. The idx argument must be in the range 0-4
(inclusive), otherwise the error message "Error: <idx> is out of the
range 0-4." should be printed. The idx argument should be printed as a single
digit. The mark argument must be in the range 0-100 (inclusive), otherwise the error
message "Error: <mark> is out of the range 0-100." is printed. The
mark argument should be printed as an integer number (it can be 1-3 digits).

• delete stnum. This command should print "Delete: stnum". The stnum

argument is described above.

• printall. This command should simply print "Printall".

• deleteall. This command should simply print "Deleteall".

The following is an example of input commands, outputs and error messages. The output and
error messages are shown in red.

% ./Driver
new 123456789
New: 123456789
locatee 5555555

A Command Parser Page 2 of 3

A Command Parser Page 3 of 3

Error: unknown command.
locate 5555555
Locate: 005555555
locate -20
Error: -20 is negative.
updatename 1234567890 Abdelrahman Tarek
Error: 1234567890 is too large.
updatemark f123456789 Abdelrahman Tarek
Error: argument is not a number.
updatename 123456789 Abdelrahman Tarek
Updatename: 123456789 Tarek Abdelrahman
updatemark 123456789 2 500
Error: 500 is out of the range 0-100.
updatemark 123456789 2 99
Updatemark: 123456789 2 99
updatemark 123456789 10 99
Error: 10 is out of the range 0-4.
updatemark 123456789 4 f9
Error: argument is not a number.
updatemark 123456789 10 f9
Error: 10 is out of the range 0-4.
delete 987654321
Delete: 987654321
printall
Printall
deleteall
Deleteall
(eof)

Note that the command “updatemark 123456789 10 f9” prints only the first error
even though the command has two errors.

5. Procedure

Create a sub-directory called lab3 in your ece244 directory, using the mkdir command, and
secure it with the chmod command. Make it your working directory. Make a main function in
the file Driver.cc that calls your command parser function. Write a Makefile that generates an
executable called Driver from the Driver.cc file.

6. Deliverables

Your program should be in the file Driver.cpp. Submit this file and the Makefile using the
command

 submitece244f 3 Driver.cpp Makefile

