

Introduction to Objects Page 1 of 4

ECE244 Programming Fundamentals

Lab Assignment #4: Introduction to Objects

1. Objectives

The objective of this assignment is to provide you with a practical introduction to
programming with C++ objects. This assignment requires you to complete the
implementation of two simple classes and their associated member functions, as well as
performing basic I/O operations.

2. Problem Statement

Your task is to implement a simple program for performing the weekly payroll calculations for
a company with several different stores. Each store has a staff, consisting of one or more
employees; each of the employees receives a different hourly wage for their work, and works a
different number of hours per week.

You are to implement two classes, as described below. For this assignment only, you are free
to add new members to the classes, if required, but you must not change or remove any of the
class elements that we have provided (e.g., you cannot change any of the provided members
from “private” to “public”, change their data types, parameter lists, etc.). Any variables that
you add to a class must be “private”; if you need to access the variables outside of your class,
you should write “public” functions to read them or change them.

The Employee Class

An Employee object exists for each employee. The object contains the employee's name, their
hourly pay rate, and the number of hours they worked this week. Its declaration is provided to
you in Employee.h, and you should fully define the class in Employee.cpp.

class Employee
{
 private:
 char * name; // Employee's name
 double hourlyRate; // Hourly pay rate
 double hours; // Hours worked this week

 double taxRate ();

 public:
 Employee ();
 ~Employee ();

 void setName (char * _name);
 void setHourlyRate (double _hourlyRate);
 void setHours (double _hours);
 void printPayroll ();
};

Introduction to Objects Page 2 of 4

The employees' wages are paid and taxed, according to the following rules:

1. Employees are paid “time and a half” (i.e., 1.5 times their normal salary) for any work
in excess of 40 hours/week. For example: an employee working 42 hours at $20/hour
would receive a total of ((40 hours · $20/hour) + (2 hours · $20/hour · 1.5)) = $860,
before taxes.

2. An employee's expected annual income is calculated by assuming that they work 40
hours/week for the entire year. For example: every employee who is paid $17/hour
would have an expected annual income of ($17/hour · 40 hours/week · 52 weeks/year)
= $35,360.

3. Employees are taxed at the following rates, based on their expected annual income:

Expected Annual
Income Tax Rate

Less than $20,000 15%
20,000 – 29,999.99 20%
30,000 – 39,999.99 25%
40,000 – 49,999.99 30%
50,000 – 59,999.99 35%
60,000 – 69,999.99 40%
$70,000 or above 45%

The Employee::printPayroll function should print out the employee's payroll information.
(Please see the Input and Output section, below, for a description of the output format.)

The Staff Class

Each Staff object contains an array of Employee objects large enough to hold
(MAX_EMPLOYEES) entries. The class declaration is provided to you in Staff.h, and you
should fully define the class in Staff.cpp.

class Staff
{
 private:
 Employee employees[MAX_EMPLOYEES];

 public:
 Staff ();
 ~Staff ();

 void addEmployee (char * _name,
 double _hourlyRate, double _hours);
 void printPayroll ();
};

The Staff::addEmployee function is used to populate the employees array. You may find it
necessary to expand the Staff class, in order to keep track of the number of employees you
have added.

Introduction to Objects Page 3 of 4

3. Input and Output

All output and error messages should be printed to standard output (cout), and all input
should be read from standard input (cin). Your program should accept the following
commands:

 new storeNumber firstName lastName hourlyRate hoursWorked

Adds a new employee. Each employee works for a different store: they should
be added to the Staff of store number storeNumber. (You should keep track of
each store's employees in a separate Staff object; the value of storeNumber will
range from 0 to [MAX_STORES – 1].) The employee's name (both firstName
and lastName) should be combined together and used to initialize the name field
of the Employee object. The hourlyRate and hoursWorked should be used to
initialize the hourlyRate and hours fields of the Employee object. This
command should print “New: OK” after adding the employee.

 payroll storeNumber

Prints the payroll for the employees that belong to the specified store. See the
example, below, for the format of the payroll output. If the payroll is printed
successfully, the command should end by printing “Payroll: OK”. If we could
not print the payroll (because there were no employees) the command should
print “Error: no employees.”

As in Assignment #3, the input will be terminated with an end of file (eof).

The following is an example of input commands and output messages. Input fields are shown
in bold, while output and error messages are highlighted in yellow:

new 1 Mary Brown 15.00 42.5
New: OK
new 0 John Smith 15.00 36
New: OK
payroll 0
John Smith: 540.00 - 135.00 = 405.00
Payroll: OK
payroll 1
Mary Brown: 656.25 - 164.06 = 492.19
Payroll: OK
payroll 2
Error: no employees.
(eof)

Introduction to Objects Page 4 of 4

As shown above, each line of the “payroll” output should appear in the following format:

 employeeName: grossPay – taxAmount = netPay

Where grossPay is the employee's pay before tax, and netPay is the employee's pay after tax.
Please note: there should be only one space after the “:”, and only one space on either side of
the “-” and the “=”. All dollar amounts should print with two decimal places, and without a
dollar-sign (e.g., $1 should print as “1.00”).

The purpose of this assignment is to test your understanding of C++ classes. As such, you
may write your assignment with the assumption that we will not test your program with
undefined or unreasonable input (i.e., invalid commands, missing fields, extra fields, negative
values, more than “MAX_STORES” stores, more than “MAX_EMPLOYEES” employees per
store, etc.). You may also assume that there will be only one command per line, and that the
individual commands will not be split into multiple lines.

4. Procedure

Create a sub-directory called lab4 in your ece244 directory, using the mkdir command, and
protect it with the chmod command. Make it your working directory, and then download the
Lab 4 source files that are provided on the course website. Using these files as a starting
point, generate a solution to this assignment. Make a main function in a file named
“main.cpp”, and add other functions to your “main.cpp” that will accept and respond
appropriately to the input commands. Additionally, create a Makefile that will produce a lab4
executable when you type “make”.

5. Deliverables

Your lab submission must consist of the following six files:

● Employee.h - The declaration of your Employee class.
● Staff.h - The declaration of your Staff class.

● Employee.cpp - The implementation of your Employee class.
● Staff.cpp - The implementation of your Staff class.

● main.cpp - Your code to accept commands and call the appropriate Staff functions.

● Makefile – A makefile which will produce an executable called “lab4”

Please note that it is ESSENTIAL that your Makefile produce an executable called lab4
when it is run, and that your lab4 accept input and produce output EXACTLY as specified in
the assignment description, without adding any additional output. Please submit your files by
using the following command:

 submitece244f 4 Employee.h Employee.cpp Staff.h Staff.cpp main.cpp Makefile

Please only submit the requested six files.

