

A Student-Marks Database Page 1 of 8

ECE244 Programming Fundamentals

Lab Assignment #5: A Student-Marks Database

1. Objectives

The objectives of this assignment are (1) to provide you with more practice on the use of the
various C++ concepts/constructs introduced in the lectures so far, including classes, arrays,
dynamic memory allocation, pointers, I/O, and dynamic data structures; and (2) to provide you
with more practice on the use of the Make utility and the debugger. This will be done in the
context of implementing a simple student-marks database.

2. Problem Statement

In this assignment, you will implement a simple database to store and retrieve student marks in
a school term. You will essentially implement two classes: studentRecord and
studentDB. The studentRecord class will be used to create objects that hold a single
student’s information. The studentDB class will be used to create a database of
studentRecord objects. You will implement two variants of the studentDB class; one is
array based, while the other is linked-list based.

2.1 The studentRecord Class

The studentRecord class has fields to represent the student number, student last and first
names, and 5 marks. It also has the following methods associated with it.

• studentRecord (). This is the default constructor. It creates an empty student
record.

• ~studentRecord (). This is the destructor. It deletes all dynamically allocated

components of the student record.

• void setStudentNumber (unsigned int studentNum). This method
sets the student number of the student record to studentNum.

• void setFirstName (char *firstName). This method sets the student first

name of the student record to the value of the string firstName.

• void setLastName (char *lastName). This method sets the student last
name of the student record to the value of the string lastName, which must exist.

• void setMark (int index, unsigned int mark). This method sets the

mark at index index of the student record to mark. The marks are indexed 0 to 4. The
method does not check that index is in this range; the caller must do so. A mark is
between 0 and 100, and the caller must also check this.

• unsigned int getStudentNumber (). This method returns the student

number of the student record.

A Student-Marks Database Page 2 of 8

• char *getFirstName (). This method returns a pointer to the first name of the

student record.

• char *getLastName (). This method returns a pointer to the last name of the
student record.

• unsigned int getMark (int index). This method returns the mark at index

index of the student record. The marks are indexed 0 to 4. The method does not check
that index is in this range; the caller must do so. A mark is between 0 and 100.

• void print (). This method prints the student record to the standard output, in the

following format:

Student number: number ↵

Student name: lastname, firstname ↵

Student marks: m1, m2, m3, m4, m5

The student number should be printed as a 9-digit integer. The ↵ character indicates
newline (i.e., endl). Note its absence after the last list of the output.

2.1 The studentDB Class

The database has fields to represent the structure of the database and the following methods
associated with it:

• studentDB (). This is the default constructor. It creates an empty database.

• ~studentDB (). This is the destructor. It deletes all the records in, and the structures
of, the database.

• bool insert (studentRecord * newRecord). This method inserts the

record pointed to by newRecord into the database. If a record with the same student
number already exists in the database, false is returned. The database must not be full
when this method is called.

• bool retrieve (unsigned int studentNum, studentRecord *

searchRecord). This method searches the database for a record with a student
number studentNum. If the record is found, then its contents are copied into the
student record searchRecord (which must exist before the method is invoked), and
true is returned. Otherwise, a false is returned and the contents of
searchRecord are unaffected.

• bool remove (unsigned int studentNum). The method deletes the record

with student number studentNum from the database. If the record is found and
deleted, true is returned. Otherwise false is returned.

• void clear (). This method clears the database by deleting all the student records

in the database, effectively returning the database to its initial empty state.

A Student-Marks Database Page 3 of 8

• bool isEmpty (). This method returns true if the database is empty, otherwise, it
returns false.

• bool isFull (). This method returns true if the database is full, otherwise it

returns false.

• void printProbes (). This method writes to the standard output the number of
probes performed by the last invocation of the retrieve method. A probe is defined
as a comparison operation between the search key (i.e., student number) and a key in
the database. The number of probes is proportional to the time it takes to search for the
search key.

• void dump (). This method dumps out the database to the standard output, one

student record at a time (using the studentRecord’s print function), separated by
empty lines, and sorted in ascending order of student numbers.

3. Background

An ordered linked-list is a linked-list for which: (1) each node has a key that is unique; and (2)
the key of each node is less than the keys of all its successor nodes in the list. An example of an
ordered linked-list is shown below, in which the keys of the nodes are integers.

4. Preparation

This is a more elaborate assignment than the first four assignments. Thus, it pays to start very
early. You must also work on the assignment before you come to the lab. You should prepare
an initial implementation of both classes: studentRecord and the array-based studentDB
(Parts I and II below) before you arrive to the lab session of the first week of the assignment.
You should prepare an initial implementation of the list-based studentDB and
Driver.cpp (Parts III and IV below) before you arrive to the lab session of the second week
of the assignment.

5. Procedure

Create a sub-directory called lab5 in your ece244 directory, using the mkdir command.
Make it your working directory. You may modify any of the .h files that you will download
for this assignment only by adding private function members. You may NOT add data
members nor public function members!

4 6 8 14

head

A Student-Marks Database Page 4 of 8

5.1 Part I – The Student Record

Use a browser to download the file studentRec.h. It contains the definition of the class
studentRecord, which is intended to hold one student’s information. The purpose of the
fields and purpose of function members are described in this file. You may modify this file only
as described above; i.e., only by adding private function members. You may NOT add data
members nor public function members.

Write the implementation of this class in a file called studentRec.cpp.

Write a short program that serves as a test-harness for this class, and call it test-
studentRec.cpp. For example, you may want to write a short program that prompts the
user for student numbers, student names, and student marks, creates a studentRecord
object, and then prints it using the print method. This program will be similar to the
command parser program you developed as part of a previous lab assignment.

Write a Makefile that can be used to generate the executable of the test-harness. The
Makefile should include lines that look like:

test-studentRec: test-studentRec.o studentRec.o
 g++ test-studentRec.o studentRec.o –o test-studentRec

test-studentRec.o: test-studentRec.cpp studentRec.h
 g++ -c test-studentRec.cpp

You can make the test-harness by typing:

make test-studentRec

5.2 Part II – The Array-based Database

The array-based database implementation assumes that the database consists of an array of
pointers to studentRecords, as shown below.

arrayDB

0 1 2 maxsize

…
…
…

…
…
…

…
…
…

3

nextIndex = 3

studentRecord

studentRecord

studentRecord

A Student-Marks Database Page 5 of 8

The integer variable next_index indicates the index of the next array location at which a
pointer to a new record can be inserted. Pointers to records are stored in the array in the order in
which they are inserted into the database, one at a time, starting with index 0. That is, the
pointer to first record inserted into the database is stored at _arrayDB[0], the second at
index _arrayDB[1], and so on.

Use a browser to download the file arrayDB.h. It contains the definition of the class
studentDB. You may modify this file only as decribed above. Write the implementation of
this class in a file called arrayDB.cpp.

Write a short program that serves as a test-harness for this class, and call it test-
arrayDB.cpp.

Extend your Makefile from Part I, to generate the executable of this test-harness.

5.3 Part III – The List-based Database

The list-based implementation assumes that the database is made of an ordered linked-list, with
data being pointers to studentRecords, as shown below.

The next pointer field in each listNode is a pointer to the next listNode in the list. The
list is “sorted” by student numbers. That is, the studentNumber field of each
studentRecord is they key of the list.

Use a browser to download the files listNode.h and listDB.h. They contain the
definitions of the class listNode and the list-based class studentDB, respectively. You
may modify these file only as described above. Write the implementation of these classes in
two files, called listNode.cpp and listDB.cpp, respectively.

Write a short program that serves as a test-harness or this class, and call it test-
listDB.cpp. Extend your Makefile from Part II, to generate the executable of this test-
harness.

next data head next data

……
……
……

studentRecord

……
……
……

studentRecord

listNode listNode

A Student-Marks Database Page 6 of 8

5.4 Part IV – The Driver Program

In this part of the assignment, you will write the user interface to the database in the main
function. The function should first create an empty database. It should then input from cin a
sequence of commands. Each command consists of an operation, followed by its parameter.
The command and the parameters are separated by white spaces. Your function should process
commands until the end-of-file (eof) is encountered. The commands and their parameters are:

• new num. This command creates a new student record with num as the student
number. The last name and first name fields are initialized to “LNU” and “FNU”,
respectively. All marks are initialized to 0’s. The new record is then inserted into the
database. If there already exists a record with the same number, the error message
“Error: a record with student number num already exists.” is
printed to cout. If the database if full, thn the error message “Error: database
is full.” is printed to cout. Otherwise no output is produced.

• locate num. This command locates the record with the student number num in the

database, and prints it contents to cout. If no such record exists, the error message
“Error: no record with student number num exists.” is printed to
cout.

• updatename num lname fname. This command locates the record with the

student number num and updates its last name and first name fields with lname and
fname, respectively. If no such record exists, the error message “Error: no
record with student number num exists.” is printed to cout. If the
operation is successful, the contents of the updated record are printed to cout.

• updatemark num idx mark. This command locates the record with the student

number num and updates its mark at index idx with mark. If no such record exists, the
error message “Error: no record with student number num
exists.” is printed to cout. If the operation is successful, the contents of the
updated record are printed to cout. Further, idx must be in the range 0-4, otherwise
the error message “Error: idx is out of the range 0-4.” is printed to
cout. Also, mark must be in the range 0-100, otherwise the error message “Error:
mark is out of the range 0-100.” is printed to cout.

• delete num. This command deletes the record with the student number num in the

database. If no such record exists, the error message “Error: no record with
student number num exists.” is printed to cout.

• printall. This command prints all the records in the database, sorted in ascending

order of student number, separated by spaces.

• printprobes num. This command locates the record with the student number num
in the database. If no such record exists, the error message “Error: no record
with student number num exists.” is printed to cout. Otherwise, the
number of probes (as defined above) is printed to cout.

• deleteall. This command deletes all the records in the database, retuning it to the

empty state.

A Student-Marks Database Page 7 of 8

The following is an example of commands and their outputs. The example assumes an empty
database at the beginning. The output is shown in red.

% ./Driver
new 123456789
locate 987654321
Error: no record with student number 987654321 exists.
locate 123456789
Student number: 123456789
Student name: LNU, FNU
Student marks: 0, 0, 0, 0, 0
updatename 123456789 Abdelrahman Tarek
Student number: 123456789
Student name: Abdelrahman, Tarek
Student marks: 0, 0, 0, 0, 0
updatemark 123456789 2 500
Error: 500 is out of the range 0-100.
updatemark 123456789 2 99
Student number: 123456789
Student name: Abdelrahman, Tarek
Student marks: 0, 0, 99, 0, 0
updatemark 123456789 5 98
Error: 5 is out of the range 0-4.
updatemark 123456789 4 98
Student number: 123456789
Student name: Abdelrahman, Tarek
Student marks: 0, 0, 99, 0, 98
delete 987654321
Error: no record with student number 987654321 exists.
new 123456789
Error: a record with student number 123456789 already exists.
new 123454321
updatename 123454321 Voss Michael
Student number: 123454321
Student name: Voss, Michael
Student marks: 0, 0, 0, 0, 0
updatemark 123454321 1 57
Student number: 123454321
Student name: Voss, Michael
Student marks: 0, 57, 0, 0, 0
printall
Student number: 123454321
Student name: Voss, Michael
Student marks: 0, 57, 0, 0, 0

Student number: 123456789
Student name: Abdelrahman, Tarek
Student marks: 0, 0, 99, 0, 98

delete 123454321
printall
Student number: 123456789

A Student-Marks Database Page 8 of 8

Student name: Abdelrahman, Tarek
Student marks: 0, 0, 99, 0, 98

delete 123456789
(eof)

Extend your Makefile from the previous, to generate the executable of this driver. You must
test your driver with both your array and list based implementations of the studentDB class.
You must call the array based driver arrayDriver.cpp, with an executable called
arrayDriver. You must call the list based driver listDriver.cpp, with an executable
called listDriver.

For this part of the assignment, you will want to reuse code that you have written for
Assignment 3.

6. Deliverables

Submit the following components of your implementations: listNode.h,
listNode.cpp, studentRec.h, arrayDB.h, listDB.h, studentRec.cpp,
arrayDB.cpp, listDB.cpp, arrayDriver.cpp, listDriver.cpp and Makefile
using the submitece244f command as follows:

submitece244f 5 studentRec.cpp arrayDB.cpp listDB.cpp arrayDriver.cpp

listDriver.cpp listNode.cpp listNode.h
studentRec.h arrayDB.h listDB.h Makefile

