

Inheritance Page 1 of 4

ECE244 Programming Fundamentals

Lab Assignment #7: Inheritance

1. Objectives

The objective of this assignment is to provide you with practice on the use of inheritance in
C++ programming. This will be done in the context of re-implementing the simple student-
marks database of Assignment 5 to allow the storage and retrieval of records of any type, not
only of type studentRecord.

2. Problem Statement

In this assignment, you will implement a simple array-based database to store and retrieve
records. In the first part of the assignment, you will implement two classes: Record and DB.
The Record class will serve as a base class from which other types of record classes can be
derived. The DB class will be used to create a database of Record objects. In the second part
of the assignment, you will design and implement the class studentRecord, which is
derived from the class Record. You will test your implementation with the Driver you
wrote for Assignment 5. However, your implementation of Record and DB must work for any
class that is derived from Record, even without any knowledge on your part of what the
derived class does.

2.1 The Record Class

The Record class has fields to represent the number (key) of an individual. It also has the
following member functions associated with it.

• Record (). This is the default constructor. It creates an empty record.

• virtual ~Record (). This is the destructor. It deletes all dynamic components
of the record.

• void setNumber (unsigned int Num). This function sets the number in the

record to Num.

• unsigned int getNumber (). This function returns the number in the record.

• virtual void print () = 0. This function prints the number to the standard
output. It is an abstract function.

Inheritance Page 2 of 4

2.1 The DB Class

The database has fields to represent the structure of the database and the following member
functions associated with it:

• DB (). This is the default constructor. It creates an empty database.

• ~DB (). This is the destructor. It deletes all the records in, and the structures of, the
database.

• bool insert (Record * newRecord). This method inserts the record pointed

to by newRecord into the database. If a record with the same number already exists in
the database, false is returned. The database must not be full when this method is
called.

• bool retrieve (unsigned int Num, Record * & searchRecord).

This method searches the database for a record with a number Num. If the record is
found, then searchRecord is made to point to it, and true is returned. Otherwise, a
false is returned and searchRecord is set to NULL.

• bool remove (unsigned int Num). The method deletes the record with

number Num from the database. If the record is found and deleted, true is returned.
Otherwise false is returned.

• void clear (). This method clears the database by deleting all the records in the

database, effectively returning the database to its initial empty state.

• bool isEmpty (). This method returns true if the database is empty, otherwise, it
returns false.

• bool isFull (). This method returns true if the database is full, otherwise it

returns false.

• void dump (). This method dumps out the database to the standard output, one
record at a time (using the Record’s virtual print function), separated by empty
lines, and sorted in ascending order of numbers.

3. Preparation

This assignment builds on Assignment 5. Thus, it pays to examine the handout and your
solution to Assignment 5. You must also work on the assignment before you come to the lab.
You should prepare an initial implementation of classes: Record, DB (Part I below)
studentRecord and Driver.cpp (Parts III and IV below) before you arrive to the lab
session.

Inheritance Page 3 of 4

4. Procedure

Create a sub-directory called lab7 in your ece244 directory, using the mkdir command.
Make it your working directory. You may modify any of the .h files that you will download
for this assignment only by adding private function members. You may NOT add data
members nor public function members!

4.1 Part I – The Record Class

Use a browser to download the file Record.h. It contains the definition of the class Record,
which is intended to hold one person’s information. The purpose of the fields and purpose of
function members is described in this file. You may modify this file only as described above;
i.e., only by adding private function members. You may NOT add data members nor public
function members.

Write the implementation of this class in a file called Record.cpp.

4.2 Part II – The DB Class

In this part, you will use the array-based database implementation from Assignment 5.
However, in this case, the array will contain pointer to Record objects, not
studentRecord objects.

Use a browser to download the file DB.h. It contains the definition of the class DB. You may
modify this file only as decribed above. Write the implementation of this class in a file called
DB.cpp.

4.3 Part III – The studentRecord Class

In this part, you must derive the class studentRecord from the class Record. The class
studentRecord adds the following data members:

unsigned int marks[5];

It also adds the following member functions:

• void setMark (int index, unsigned int mark). This method sets the
mark at index index of the student record to mark. The marks are indexed 0 to 4. The
method does not check that index is in this range; the caller must do so. A mark is
between 0 and 100, and the caller must also check this.

• Unsigned int getMark (int index). This method returns the mark at index

index of the student record. The marks are indexed 0 to 4. The method does not check
that index is in this range; the caller must do so. A mark is between 0 and 100.

• void setFirstName (char * firstName). This function sets the first name

in the record to the value of the string firstName.

• void setLastName (char * lastName). This function sets the last name in
the record to the value of the string lastName.

Inheritance Page 4 of 4

• char * getFirstName (). This function returns a pointer to the first name in the

record.

• char * getLastName (). This function returns a pointer to the last name in the
record.

• void print (). This method prints the student record to the standard output, in the

following format:

Student number: number ↵

Student name: lastname, firstname ↵

Student marks: m1, m2, m3, m4, m5↵

The student number should be printed as a 9-digit integer. The ↵ character indicates newline
(i.e., endl).

Write studentRecord.h and implement it in studentRecord.cpp.

4.4 Part IV – The Driver Program

In this part of the assignment, you will re-use (with some minor changes) the array-database
driver from Assignment 5 to test your implementation of studentRecord with DB.

Write a Makefile to generate the executable of Driver.

5. Deliverables

Submit the following components of your implementations: Record.h, Record.cpp,
DB.h, and DB.cpp, using the submitece244f command as follows:

submitece244f 7 Record.h Record.cpp DB.h DB.cpp

There is no need to submit the studentRecord and Driver files. These files were simply
for your benefit to test your implementation of Record and DB. Indeed, your Record and DB
classes will be tested and marked with an arbitrary class, derived from Record, and its
associated Driver.

