
Recursion

Wael Aboulsaadat

ECE244

Acknowledgment: these slides are partially based on slides by; Prof. Schmidt from Drexel U., Prof.
Shewchuk from UC Berkely, Kruse & Ryba Data Structure and Program Design in C++, Prof.

Savitch Problem Solving in C++ and others

Recursive Functions
for Tasks

 A recursive function contains a call to itself
 When breaking a task into subtasks, it may be

that the subtask is a smaller example of the same
task
 Searching an array could be divided into searching the

first and second halves of the array
 Searching each half is a smaller version of searching

the whole array
 Tasks like this can be solved with recursive functions

A Closer Look at Recursion

 Recursive calls are tracked by
 Temporarily stopping execution at the

recursive call
 The result of the call is needed before proceeding

 Saving information to continue execution later
 Evaluating the recursive call
 Resuming the stopped execution

How Recursion Ends

 Eventually one of the recursive calls must not
depend on another recursive call

 Recursive functions are defined as
 One or more cases where the task is

accomplished by using recursive calls to do a
smaller version of the task

 One or more cases where the task is
accomplished without the use of any recursive
calls
 These are called base cases or stopping cases

"Infinite" Recursion

 A function that never reaches a base case, in
theory, will run forever
 In practice, the computer will run out of

resources and the program will terminate
abnormally

Example: Infinite Recursion

 Function write_vertical, without the base case
void new_write_vertical(int n)

{
new_write_vertical (n /10);
cout << n % 10 << endl;

}
will eventually call write_vertical(0), which will
call write_vertical(0),which will call write_vertical(0), which
will call write_vertical(0), which will call write_vertical(0),
which will call write_vertical(0), which will call
write_vertical (0), …

Stack Overflow

 Because each recursive call causes values
to be placed on the stack
 infinite recursion can force the stack to grow

beyond its limits to accommodate all the
activation frames required

 The result is a stack overflow
 A stack overflow causes abnormal termination

of the program

 Any task that can be accomplished using
recursion can also be done without recursion
 A nonrecursive version of a function typically

contains a loop or loops
 A non-recursive version of a function is usually

called an iterative-version
 A recursive version of a function

 Usually runs slower
 Uses more storage
 Often use code that is easier

to write and understand

Recursion versus Iteration

Recursive Functions
for Values

 Recursive functions can also return values
 The technique to design a recursive function that

returns a value is basically the same as what
you have already seen
 One or more cases in which the value returned

is computed in terms of calls to the same
function with (usually) smaller arguments

 One or more cases in which the value returned
is computed without any recursive calls (base
case)

Program Example:
A Powers Function

23 = 8
2 * 2 * 2

92 = 81

 To define a new power function that returns an
int, such that

int y = power(2,3);
places 2^3 in y
 Use this definition:

xn = xn-1 * x
 Translating the right side to C++ gives:

power(x, n-1) * x
 The base case: n = = 0 and power should

return 1

Program Example:
A Powers Function

 int power(2, 1)
{

…
if (n > 0)

return (power(2, 1-1) * 2);
else

return (1);
}

Call to power(2,0)

resume

1

return 2

Function Ends

Tracing power(2,1)

Function call ends

1 is returned

Tracing power(2,0)

 int power(2, 0)
{

…
if (n > 0)

return (power(2, 0-1) * 2);
else

return (1);
}

 Power(2, 3) results in more recursive calls:
 power(2, 3) is power(2, 2) * 2
 Power(2, 2) is power(2, 1) * 2
 Power(2, 1) is power(2, 0) * 2
 Power (2, 0) is 1 (stopping case)

Tracing power(2, 3)

how to approach recursion?
1. Strategy:

- Rewrite the problem definition in a recursive way..
2. Header:

- What info needed as input and output?
- Write the function header.
- Use a noun phrase for the function name

3. Spec:
- Write a method specification in terms of the parameters and return

value.
- Include preconditions

4. Base cases:
1. When is the answer so simple that we know it without recursing?
2. What is the answer in these base cases(s)?
3. Write code for the base case(s)

5. Recursive Cases:
1. Describe the answer in the other case(s) in terms of the answer on

smaller inputs
2. Simplify if possible
3. Write code for the recursive case(s)

Factorial using Recursion

Factorial using Recursion

Factorial using Recursion

	Slide Number 1
	Recursive Functions �for Tasks
	A Closer Look at Recursion
	How Recursion Ends
	"Infinite" Recursion
	Example: Infinite Recursion
	Stack Overflow
	Recursion versus Iteration
	Recursive Functions �for Values
	Program Example:�A Powers Function
	Program Example:�A Powers Function
	Tracing power(2,1)
	Tracing power(2,0)
	Tracing power(2, 3)�
	Slide Number 15
	Slide Number 16
	how to approach recursion?
	Factorial using Recursion
	Factorial using Recursion
	Factorial using Recursion

