ECE244

Wael Aboulsaadat

Recursion

Acknowledgment: these slides are partially based on slides by; Prof. Schmidt from Drexel U., Prof. Shewchuk from UC Berkely, Kruse \& Ryba Data Structure and Program Design in C++, Prof. Savitch Problem Solving in C++ and others

Recursive Functions

 for Tasks- A recursive function contains a call to itself
- When breaking a task into subtasks, it may be that the subtask is a smaller example of the same task
- Searching an array could be divided into searching the first and second halves of the array
- Searching each half is a smaller version of searching the whole array
- Tasks like this can be solved with recursive functions

A Closer Look at Recursion

- Recursive calls are tracked by
- Temporarily stopping execution at the recursive call
- The result of the call is needed before proceeding
- Saving information to continue execution later
- Evaluating the recursive call
- Resuming the stopped execution

How Recursion Ends

- Eventually one of the recursive calls must not depend on another recursive call
- Recursive functions are defined as
- One or more cases where the task is accomplished by using recursive calls to do a smaller version of the task
- One or more cases where the task is accomplished without the use of any recursive calls
- These are called base cases or stopping cases

"Infinite" Recursion

- A function that never reaches a base case, in theory, will run forever
- In practice, the computer will run out of resources and the program will terminate abnormally

Example: Infinite Recursion

- Function write_vertical, without the base case void new_write_vertical(int n) \{
new_write_vertical (n/10); cout << n \% $10 \ll$ endl; \}
will eventually call write_vertical(0), which will call write_vertical (0), ...

Stack Overflow

- Because each recursive call causes values to be placed on the stack
- infinite recursion can force the stack to grow beyond its limits to accommodate all the activation frames required
- The result is a stack overflow
- A stack overflow causes abnormal termination of the program

Recursion versus Iteration

- Any task that can be accomplished using recursion can also be done without recursion
- A nonrecursive version of a function typically contains a loop or loops
- A non-recursive version of a function is usually called an iterative-version
- A recursive version of a function
- Usually runs slower
- Uses more storage
- Often use code that is easier to write and understand

Recursive Functions for Values

- Recursive functions can also return values
- The technique to design a recursive function that returns a value is basically the same as what you have already seen
- One or more cases in which the value returned is computed in terms of calls to the same function with (usually) smaller arguments
- One or more cases in which the value returned is computed without any recursive calls (base case)

Program Example: A Powers Function

$2^{3}=8$

$$
2 * 2 * 2
$$

$9^{2}=81$

Program Example:
 A Powers Function

- To define a new power function that returns an int, such that

$$
\text { int } y=\operatorname{power}(2,3) ;
$$

places $2^{\wedge} 3$ in y

- Use this definition:

$$
x n=x n-1 * x
$$

- Translating the right side to C++ gives: power(x, n-1) * x
- The base case: $\mathrm{n}==0$ and power should return 1

Tracing power(2,1)

- int power(2, 1)
\{
if $(\mathrm{n}>0)$
return ($\operatorname{power(2,1-1)~*~2);~}$ else return (1);
\}

Call to power(2,0)

Function Ends

Tracing power(2,0)

- int power(2,0)
\{
if $(\mathrm{n}>0)$
return (power(2, 0-1) * 2); else return (1);
\}

Function call ends

1 is returned

Tracing power(2, 3)

- Power(2, 3) results in more recursive calls:
- power(2,3) is power(2,2) *2
- Power(2,2) is power(2,1) *2
- Power(2,1) is power(2,0) *2
- Power (2,0) is 1 (stopping case)

Evaluating the Recursive Function Call power (2, 3)

The Recursive Function power

```
    //Program to demonstrate the recursive function power.
    #include <iostream>
    #include <cstdlib>
    using namespace std;
    int power(int x, int n);
    //Precondition: n >= 0.
    //Returns x to the power n.
    int main()
    {
        for (int n = 0; n < 4; n++)
            cout << "3 to the power " << n
                        << " is " << power(3, n) << endl;
        return 0;
}
//uses iostream and cstdlib:
int power(int x, int n)
{
    if (n < 0)
    {
        cout << "Illegal argument to power.\n";
        exit(1);
    }
    if (n > 0)
        return ( power(x, n - 1)*x );
    else // n == 0
        return (1);
}
Sample Dialogue
```

 3 to the power 0 is 1
 3 to the power 1 is 3
 3 to the power 2 is 9
 3 to the power 3 is 27

how to approach recursion?

1. Strategy:

- Rewrite the problem definition in a recursive way..

2. Header:

- What info needed as input and output?
- Write the function header.
- Use a noun phrase for the function name

3. Spec:

- Write a method specification in terms of the parameters and return value.
- Include preconditions

4. Base cases:
5. When is the answer so simple that we know it without recursing?
6. What is the answer in these base cases(s)?
7. Write code for the base case(s)

Recursive Cases:

1. Describe the answer in the other case(s) in terms of the answer on smaller inputs
2. Simplify if possible
3. Write code for the recursive case(s)

Factorial using Recursion

```
N! = 1*2* ...* N
int Factorial(int n) {
    int Product = 1,
            Scan = 2;
    while ( Scan <= n ) {
        Product = Product * Scan ;
        Scan = Scan + 1 ;
    }
    return (Product) ;
}
```


Factorial using Recursion

```
N! = 1*2* ...*N
int Factorial(int n) {
    int Product = 1,
            Scan = 2;
    while ( Scan <= n ) {
        Product = Product * Scan ;
        Scan = Scan + 1 ;
    }
    return (Product) ;
}
```

```
int Factorial(int n ) {
```

int Factorial(int n) {
if (n > 1)
if (n > 1)
return(n * Factorial (n-1));
return(n * Factorial (n-1));
else
else
return(1);
return(1);
}

```
}
```


Factorial using Recursion

$$
\mathrm{N}!=1 * 2 * \ldots * \mathrm{~N}
$$

