
Analysis of Algorithms
Big-Oh

Wael Aboulsaadat

ECE244

Acknowledgment: these slides are partially based on slides by; Prof. Schmidt from Drexel U., Prof.
Shewchuk from UC Berkely, Kruse & Ryba Data Structure and Program Design in C++, Prof. Savitch

Problem Solving in C++ and others

Big-Oh Defined
 The O symbol was introduced in 1927 to indicate relative growth of

two functions based on asymptotic behavior of the functions
 It is now used to classify functions and families of functions

T(n) = O(f(n)) if there are constants c and n0 such that T(n) < c*f(n)
when n ≥ n0

c*f(n)

T(n)

n0 n

c*f(n) is an upper bound for T(n)

Major Notations
Ο(g(n)), Big-Oh of g of n, the Asymptotic Upper
Bound.

Ω(g(n)), Big-Omega of g of n, the Asymptotic
Lower Bound.

Asymptotic Analysis

Ignoring constants in T(n)
Analyzing T(n) as n "gets large"

)T(n) = O(n3 ly,Notational
"3n of order the on "roughly grows time running The

)(
log3

nT
nnn2nnn

 dominatesit so
, and , , than larger MUCH is larger, grows As

nnnnnnT 4log24213)(23 +++=

The big-oh (O) Notation

Can we justify Big O notation?
Big O notation is a huge simplification; can we
justify it?

It only makes sense for large problem sizes
For sufficiently large problem sizes, the
highest-order term swamps all the rest!

Consider R = x2 + 3x + 5 as x varies:
x = 0 x2 = 0 3x = 10 5 = 5 R = 5
x = 10 x2 = 100 3x = 30 5 = 5 R = 135
x = 100 x2 = 10000 3x = 300 5 = 5 R = 10,305
x = 1000 x2 = 1000000 3x = 3000 5 = 5 R = 1,003,005
x = 10,000 R = 100,030,005
x = 100,000 R = 10,000,300,005

Table of growth rates
The order of the algorithmic is more important than the speed of the
processor

O(1)
The no-growth curve

Independent of the size of the data set on which it operates

E.g.
Sum first and last elements in an array

Constant time

int sum_first_last(int arr[], int Size)
{

int nSum;
nSum = arr[0] + arr[Size-1];
return nSum;

}

O(c)

O(N)
Algorithm's performance is directly proportional to the size of the
data set being processed

E.g.
Scanning an array or linked list takes O(N) time.
Probing an array is still O(N)

Linear Time

for (i=0; i< N; i++)
{

val = a[i];
cout << val;

}

O(N)

O(N+M)
O(N+M) is just a way of saying that two data sets are involved, and
that their combined size determines performance

O(N2)
algorithm's performance is proportional to the square of the data
set size

This happens when the algorithm processes each element of a set,
and that processing requires another pass through the set.

E.g.
Printout char one by one in a
string of length N
Bubble Sort is O(N2).

Quadratic Time

for (i=0; i< strlen(str); i++)
{

c = str[i];
cout << c;

}

O(N2)

N = strlen(str);
for (i=0; i<N; i++)
{

c = str[i];
cout << c;

}

O(N)

O(N2)
algorithm's performance is proportional to the square of the data
set size

This happens when the algorithm processes each element of a set,
and that processing requires another pass through the set.

E.g.
Bubble Sort is O(N2).

O(N.M)
indicates that two data sets are involved, and the processing of
each element of one involves processing the second set.

If the two set sizes are roughly equivalent, some people just say
O(N2) instead.

E.g.
Text search/replace

………..

Lots of inner loops!

Cubic Time

O(N3)

You have an algorithm with exponential growth behavior.

In the 2 case, time or space double for each new element in data
set.

There's also O(10N)  etc.

Exponential time

O(2N)

log N implies log2N, which means, roughly, the number of times you
can partition a set in half, then partition the halves, and so on, while
still having non-empty sets.

Think backward!
210 = 1024
log21024 = 10

E.g.
It takes O(log N) time to search a balanced binary tree
1024  512  256 128  64  32  16  8  4  2

10

Logarithmic time

O(log N) and O(N log N)

Comparison of Different Orders
Size of Input Data (N) vs. Time

	Slide Number 1
	Big-Oh Defined
	Major Notations
	Asymptotic Analysis
	Can we justify Big O notation?
	Table of growth rates
	O(1)
	O(N)
	O(N+M)
	O(N2)
	O(N2)
	O(N.M)
	O(N3)
	O(2N)
	O(log N) and O(N log N)
	Comparison of Different Orders

