ECE244

Wael Aboulsaadat

Acknowledgment: these slides are partially based on slides by; Prof. Schmidt from Drexel U., Prof. Shewchuk from UC Berkely, Kruse & Ryba Data Structure and Program Design in C++, Prof. Savitch Problem Solving in C++ and others

Big-Oh Defined

- The O symbol was introduced in 1927 to indicate relative growth of two functions based on asymptotic behavior of the functions
- It is now used to classify functions and families of functions

T(n) = O(f(n)) if there are constants c and n0 such that $T(n) < c^{*}f(n)$ when $n \ge n0$

Major Notations

- O(g(n)), Big-Oh of g of n, the Asymptotic Upper Bound.
- Ω(g(n)), Big-Omega of g of n, the Asymptotic Lower Bound.

Asymptotic Analysis

$$T(n) = 13n^3 + 42n^2 + 2n\log n + 4n$$

- Ignoring constants in T(n)
- Analyzing T(n) as n "gets large"

As *n* grows larger, n^3 is MUCH larger than n^2 , $n\log n$, and *n*, so it dominates T(n)

The running time grows "roughly on the order of n^3 " Notationally, $T(n) = O(n^3)$ The big-oh (*O*) Notation

Can we justify Big O notation?

- Big O notation is a huge simplification; can we justify it?
 - It only makes sense for *large* problem sizes
 - For sufficiently large problem sizes, the highest-order term swamps all the rest!
- Consider $R = x^2 + 3x + 5$ as x varies:

$\mathbf{x} = 0$	x2 = 0	3x = 10	5 = 5	R = 5
x = 10	x2 = 100	$3\mathbf{x} = 30$	5 = 5	R = 135
x = 100	x2 = 10000	3x = 300	5 = 5	R = 10,305
x = 1000	x2 = 1000000	3x = 3000	5 = 5	R = 1,003,005
x = 10,00	0	R = 100,030,005		
x = 100, 0	00	R = 10,000,300,005		

Table of growth rates

The order of the algorithmic is more important than the speed of the processor

Ν	log_N	n*log_N	N ²	N ³	2^{N}	3 ^N
1	0	0	1	1	2	3
2	1	2	4	8	4	9
4	2	8	16	64	16	81
8	3	24	64	512	256	6561
16	4	64	256	4096	65,536	43,046,721
32	5	160	1024	322,768	4,294,967,296	
64	6	384	4096	262,144	(Note 1)	
128	7	896	16,384	2,097,152	(Note 2)	
256	8	2048	65,536	1,677,216	???????	

Note1: The value here is approximately the number of machine instructions executed by a 1 gigaflop computer in 5000 years.

Note 2: The value here is about 500 billion times the age of the universe in nanoseconds, assuming a universe age of 20 billion years.

{

}

- The no-growth curve C.
- Independent of the size of the data set on which it operates C.
- E.g. 5
 - Sum first and last elements in an array
- **Constant time**

int sum_first_last(int arr[], int Size) **O(c)** int nSum; nSum = arr[0] + arr[Size-1];return nSum;

O(N)

- Algorithm's performance is directly proportional to the size of the data set being processed
- E.g.
 - Scanning an array or linked list takes O(N) time.
 - Probing an array is still O(N)
- C Linear Time

 O(N+M) is just a way of saying that two data sets are involved, and that their combined size determines performance

- algorithm's performance is proportional to the square of the data set size
- This happens when the algorithm processes each element of a set, and that processing requires another pass through the set.
- E.g.
 - Printout char one by one in a string of length N
 - Bubble Sort is O(N²).
- Quadratic Time

for (i=0; i < strlen(str); i++) (N^2) c = str[i]; $cout \ll c$: N = strlen(str);for (i=0; i<N; i++) ł O(N)c = str[i];cout << c:

- algorithm's performance is proportional to the square of the data set size
- This happens when the algorithm processes each element of a set, and that processing requires another pass through the set.
- E.g.
 Bubble Sort is O(N²).

- indicates that two data sets are involved, and the processing of each element of one involves processing the second set.
- If the two set sizes are roughly equivalent, some people just say O(N²) instead.
- E.g.

Text search/replace

.... ...

- C Lots of inner loops!
- Cubic Time

O(2^N)

- You have an algorithm with exponential growth behavior.
- In the 2 case, time or space double for each new element in data set.
- \checkmark There's also O(10^N) \otimes etc.
- Exponential time

O(log N) and O(N log N)

Iog N implies log₂N, which means, roughly, the number of times you can partition a set in half, then partition the halves, and so on, while still having non-empty sets.

Think backward!

 $2^{10} = 1024$ $\log_2 1024 = 10$

r E.g.

✓ It takes O(log N) time to search a balanced binary tree 1024 → 512 → 256 → 128 → 64 → 32 → 16 → 8 → 4 → 2 10

Logarithmic time

Comparison of Different Orders

Size of Input Data (N) vs. Time

