ECE244

Wael Aboulsaadat

Analysis of Algorithms

Big-Oh

Acknowledgment: these slides are partially based on slides by; Prof. Schmidt from Drexel U., Prof. Shewchuk from UC Berkely, Kruse \& Ryba Data Structure and Program Design in C++, Prof. Savitch Problem Solving in C++ and others

Big-Oh Defined

- The O symbol was introduced in 1927 to indicate relative growth of two functions based on asymptotic behavior of the functions
- It is now used to classify functions and families of functions
$T(n)=O(f(n))$ if there are constants c and $n 0$ such that $T(n)<c^{*} f(n)$ when $n \geq n 0$

Major Notations

$r \mathrm{O}(\mathrm{g}(\mathrm{n}))$, Big-Oh of g of n , the Asymptotic Upper Bound.
$r \Omega(\mathrm{~g}(\mathrm{n}))$, Big-Omega of g of n , the Asymptotic Lower Bound.

Asymptotic Analysis

$$
T(n)=13 n^{3}+42 n^{2}+2 n \log n+4 n
$$

r Ignoring constants in $T(n)$
r Analyzing $T(n)$ as \boldsymbol{n} "gets large"

As n grows larger, n^{3} is MUCH larger than $n^{2}, n \log n$, and n, soit dominates $T(n)$

The running time grows "roughly on the order of n^{3} " Notationally, $T(n)=O\left(n^{3}\right)$

> The big-oh (O) Notation

Can we justify Big O notation?

r Big O notation is a huge simplification; can we justify it?

- It only makes sense for large problem sizes
- For sufficiently large problem sizes, the highest-order term swamps all the rest!
r Consider $R=x^{2}+3 x+5$ as x varies:

$x=0$	$x 2=0$	$3 x=10$	$5=5$
$x=10 \quad x 2=100$	$3 x=30$	$5=5$	$R=5$
$x=100 \quad x 2=10000$	$3 x=300$	$5=5$	$R=10,305$
$x=1000 \quad x 2=1000000$	$3 x=3000$	$5=5$	$R=1,003,005$
$x=10,000$			$R=100,030,005$
$x=100,000$			$R=10,000,300,005$

Table of growth rates

r The order of the algorithmic is more important than the speed of the processor

\mathbf{N}	$\boldsymbol{l o g}_{\mathbf{2}} \mathbf{N}$	$\mathbf{n}^{*} \log _{\mathbf{2}} \mathbf{N}$	$\mathbf{N}^{\mathbf{2}}$	$\mathbf{N}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{N}}$	$\mathbf{3}^{\mathbf{N}}$
1	0	0	1	1	2	3
2	1	2	4	8	4	9
4	2	8	16	64	16	81
8	3	24	64	512	256	6561
16	4	64	256	4096	65,536	$43,046,721$
32	5	160	1024	322,768	$4,294,967,296$	\ldots
64	6	384	4096	262,144	(Note 1)	\ldots
128	7	896	16,384	$2,097,152$	(Note 2)	\ldots
256	8	2048	65,536	$1,677,216$???????	\ldots

Note1: The value here is approximately the number of machine instructions executed by a 1 gigaflop computer in 5000 years.

Note 2: The value here is about 500 billion times the age of the universe in nanoseconds, assuming a universe age of 20 billion years.

O(1)

r The no-growth curve

r Independent of the size of the data set on which it operates
r E.g.
r Sum first and last elements in an array
r Constant time

O(N)

r Algorithm's performance is directly proportional to the size of the data set being processed
r E.g.
r Scanning an array or linked list takes $\mathrm{O}(\mathrm{N})$ time.
r Probing an array is still $\mathrm{O}(\mathrm{N})$
r Linear Tìme

```
for (i=0; i< N; i++ )
{
    val = a[i];
    cout << val;
}
```


$\mathrm{O}(\mathrm{N}+\mathrm{M})$

$r^{\circ} \mathrm{O}(\mathrm{N}+\mathrm{M})$ is just a way of saying that two data sets are involved, and that their combined size determines performance

$\mathrm{O}\left(\mathrm{N}^{2}\right)$

r algorithm's performance is proportional to the square of the data set size
r This happens when the algorithm processes each element of a set, and that processing requires another pass through the set.
r E.g.
r Printout char one by one in a string of length N
r Bubble Sort is $\mathrm{O}\left(\mathrm{N}^{2}\right)$.
r Quadratic Tìme

```
for (i=0; i< strlen(str); i++ )
{
c = str[i];
cout << c;
}
```

```
N = strlen(str);
for (i=0; i<N; i++ )
{
\[
\begin{aligned}
& \mathrm{c}=\operatorname{str}[\mathrm{i}] ; \\
& \text { cout } \ll \mathrm{c}
\end{aligned}
\]

\section*{\(\mathrm{O}\left(\mathrm{N}^{2}\right)\)}
\(r\)
algorithm's performance is proportional to the square of the data set size
\(r\) This happens when the algorithm processes each element of a set, and that processing requires another pass through the set.
\(r\) Egg.
\(r\) Bubble Sort is \(\mathrm{O}\left(\mathrm{N}^{2}\right)\).

\section*{\(\mathrm{O}(\mathrm{N} \cdot \mathrm{M})\)}
\(r\) indicates that two data sets are involved, and the processing of each element of one involves processing the second set.
\(r\) If the two set sizes are roughly equivalent, some people just say \(\mathrm{O}\left(\mathrm{N}^{2}\right)\) instead.
r E.g.
r Text search/replace

\section*{\(\mathrm{O}\left(\mathrm{N}^{3}\right)\)}
\(r\) Lots of inner loops!
r Cubic Tìme

\section*{\(\mathrm{O}\left(2^{\mathrm{N}}\right)\)}
\(r\) You have an algorithm with exponential growth behavior.
\(r\) In the 2 case, time or space double for each new element in data set.
\(r\) There's also \(\mathrm{O}\left(10^{\mathrm{N}}\right) \cdot \operatorname{etc}\).
\(r\) Exponential time

\section*{\(O(\log N)\) and \(O(N \log N)\)}
\(r \log \mathrm{~N}\) implies \(\log _{2} \mathrm{~N}\), which means, roughly, the number of times you can partition a set in half, then partition the halves, and so on, while still having non-empty sets.
\(r\) Think backward!
\[
\begin{aligned}
& 2^{10}=1024 \\
& \log _{2} 1024=10
\end{aligned}
\]
\(r\) E.g.
\(r\) It takes \(\mathbf{O}(\log N)\) time to search a balanced binary tree \(1024 \rightarrow 512 \rightarrow 256 \rightarrow 128 \rightarrow 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2\)

10
\(r\) Logarithmic time

\section*{Comparison of Different Orders}

Size of Input Data (N) vs. Time
```

