## ECE244

Wael Aboulsaadat

## Hash table Implementation

Acknowledgment: these slides are partially based on slides by; Prof. Schmidt from Drexel U., Prof. Shewchuk from UC Berkely, Kruse \& Ryba Data Structure and Program Design in C++, Prof. Savitch Problem Solving in C++ and others

## Hash table -- insert

```
bool HashTable::insert( const Element &elm)
```

```
if( _nCount == _nSize)
    return (false); // table is full!
```

int home = hashfunc(elm.key);
int nIndex;
for(nIndex=home; !is_empty(nIndex); nIndex = (nIndex + 1) \% _nsize )
if( elm.key == Hashtable[nIndex], key )
return (false); // duplicate
HashTable[nIndex] = elm;
_nCount++;
return (true);

## Hash table -- search

```
bool HashTable::search( const int Key, Element& elm )
{
int nHome = hashfunc(key);
for(int nIndex = nHome; !is_empty(nIndex%_nSize) &&
                        nIndex < (nHome + _nSize); nIndex++ )
    if(Key == HashTable[nIndex % _nSize],key )
    {
        elm = HashTable[nIndex % _nSize];
        return (true);
    }
return (false);
}
```


## Analysis of Algorithms

> Big-Oh
> Part 3

## Recurrence Relations

$r$ Can easily describe the runtime of recursive algorithms
$r$ Can then be expressed in a closed form (not defined in terms of itself)
$r$ Consider the linear search:

## Eg. 1 - Linear Search

$\checkmark$ Recursively
$r$ Look at an element (constant work, c), then search the remaining elements...


- $T(n)=T(n-1)+c$
- "The cost of searching $n$ elements is the cost of looking at 1 element, plus the cost of searching n-1 elements"


## Linear Seach (cont)

Caveat:
$r$ You need to convince yourself (and others) that the single step, examining an element, *is* done in constant time.
$r$ Can I get to the $\mathrm{i}^{\text {th }}$ element in constant time, either directly, or from the (i-1) ${ }^{\text {th }}$ element?
$r$ Look at the code

# Methods of Solving Recurrence Relations 

r Substitution (aka ìteration)
$r$ Draw the recursion tree, think about it
$r$ Guess at an upper bound, prove it by induction

## Linear Search (cont.)

$r$ We'll "unwind" a few of these
$T(n)=T(n-1)+c$
But, $T(n-1)=T(n-2)+c$, from above
Substituting back in:

$$
T(n)=T(n-2)+c+c
$$

Gathering like terms

$$
\begin{equation*}
T(n)=T(n-2)+2 c \tag{2}
\end{equation*}
$$

## Linear Search (cont.)

$r$ Keep going:

$$
\begin{aligned}
& T(n)=T(n-2)+2 c \\
& T(n-2)=T(n-3)+c
\end{aligned}
$$

$$
T(n)=T(n-3)+c+2 c
$$

$$
\begin{equation*}
T(n)=T(n-3)+3 c \tag{3}
\end{equation*}
$$

$r$ One more:

$$
\begin{equation*}
T(n)=T(n-4)+4 c \tag{4}
\end{equation*}
$$

## Looking for Patterns

$r$ Note, the intermediate results are enumerated
$r$ We need to pull out patterns, to write a general expression for the $\mathbf{k}^{\text {th }}$ unwinding

- This requires practice. It is a little bit art. The brain learns patterns, over time. Practice.
$r$ Be careful while simplifying after substitution


## Eg. 1 - list of intermediates

| Result at $i^{\text {th }}$ unwinding | i |
| :--- | :---: |
| $T(n)=T(n-1)+1 c$ | 1 |
| $T(n)=T(n-2)+2 c$ | 2 |
| $T(n)=T(n-3)+3 c$ | 3 |
| $T(n)=T(n-4)+4 c$ | 4 |

## Linear Search (cont.)

$r$ An expression for the $k$ th unwinding:
$T(n)=T(n-k)+k c$
$r$ We have 2 variables, $k$ and $n$, but we have a relation
$r \mathbf{T}(\mathrm{~d})$ is constant (can be determined) for some constant d (we know the algorithm)
$r$ Choose any convenient \# to stop.

## Linear Search (cont.)

$r$ Let's decide to stop at $T(0)$. When the list to search is empty, you're done...
$r 0$ is convenient, in this example...

$$
\text { Let } n-k=0 \quad=>\quad n=k
$$

$r$ Now, substitute $\mathbf{n}$ in everywhere for $\mathbf{k}$ :

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n}-\mathrm{n})+\mathrm{nc} \\
\mathrm{~T}(\mathrm{n}) & =T(0)+\mathrm{nc} \\
& =\mathrm{c}_{0} \quad+\mathrm{cn}=\mathrm{O}(\mathrm{n})
\end{aligned}
$$

( $T(0)$ is some constant, $\mathrm{c}_{0}$ )

## Binary Search

$r$ for an ordered array A, finds if $x$ is in the array A[lo...hi]

BINARY-SEARCH (A, lo, hì, x)

> if $($ lo $>$ hi)
> $\quad$ return FALSE
> mid $\leftarrow\lfloor($ lo + hi $) / 2\rfloor$
> if $x=A[$ mid $]$

| 1 | 2 | 3 | 4 | 5 | 6 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | 5 | 7 | 9 | 10 | 11 | 12 |
| $\uparrow$ |  |  |  |  |  |  |  |

return TRUE
if ( $x<A[m i d]$ )
BINARY-SEARCH (A, lo, mid-1, x)
if ( $x>A[m i d]$ )
BINARY-SEARCH (A, mid+1, hì, x)

## Example

## $r A[8]=\{1,2,3,4,5,7,9,11\}$

- $\mathrm{lo}=1 \quad \mathrm{hi}=8 \quad \mathrm{x}=7$


| 1 | 2 | 3 | 4 | 5 | 7 | 9 | 11 |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |$\quad$ mid $=6, \mathrm{~A}[\mathrm{mid}]=x$ Found!

## Another Example

$r A[8]=\{1,2,3,4,5,7,9,11\}$

$$
-\mathrm{lo}=1 \quad \mathrm{hi}=8 \quad \mathrm{x}=6
$$






## Analysis of BINARY-SEARCH

BINARY-SEARCH (A, lo, hi, x)
if (lo > hi)
return FALSE
mid $\leftarrow\lfloor(10+h i) / 2\rfloor$
if $x=A[m i d]$
constant time: $\mathrm{c}_{1}$
return TRUE
if ( $x$ < $A[m i d]$ )
BINARY-SEARCH $(A, 10$, mid-1,$x) \longleftarrow$ same problem of
if ( $x>A[m i d]$ ) size $n / 2$
BINARY-SEARCH $(A$, mid $+1, ~ h i, x) \longleftarrow$ same problem of size n/2

$$
T(n)=T(n / 2)+c
$$

- $T(n)$ - running time for an array of size $n$


## Binary Search (cont)

Let's do some quick substitutions:

$$
\begin{aligned}
& T(n)=T(n / 2)+c \\
& \text { but } T(n / 2)=T(n / 4)+c, \text { so } \\
& T(n)=T(n / 4)+c+c \\
& T(n)=T(n / 4)+2 c \\
& T(n / 4)=T(n / 8)+c \\
& T(n)=T(n / 8)+c+2 c \\
& T(n)=T(n / 8)+3 c
\end{aligned}
$$

## Binary Search (cont.)

## Result at th unwinding

$T(n)=T(n / 2)+c$
$T(n)=T(n / 4)+2 c$
$T(n)=T(n / 8)+3 c$
$T(n)=T(n / 16)+4 c$

## Binary Search (cont)

$r$ We need to write an expression for the $k^{\text {th }}$ unwinding (ìn $\mathbf{n}$ \& k)

- Must find patterns, changes, as $i=1,2, \ldots, k$
- This can be the hard part
- Do not get discouraged! Try something else...
- We'll re-write those equations...
$r$ We will then need to relate $\mathbf{n}$ and $k$


## Binary Search (cont)

| Result at ith unwinding |  |  | $i$ |
| :--- | :--- | :--- | :---: |
| $T(n)$ | $=T(n / \mathbf{2})+c$ | $=T\left(n / 2^{1}\right)+\mathbf{1} c$ | 1 |
| $T(n)$ | $=T(n / \mathbf{4})+\mathbf{2 c}$ | $=T\left(n / 2^{2}\right)+\mathbf{2 c}$ | 2 |
| $T(n)$ | $=T(n / \mathbf{8})+\mathbf{3 c}$ | $=T\left(n / 2^{3}\right)+\mathbf{3 c}$ | 3 |
| $T(n)$ | $=T(n / \mathbf{1 6})+\mathbf{4} c$ | $=T\left(n / 2^{4}\right)+\mathbf{4} c$ | 4 |

## Binary Search (cont)

r After k unwindings:
$T(n)=T\left(n / 2^{k}\right)+k c$
$r$ Need a convenient place to stop unwinding need to relate $k$ \& $n$
$r$ Let's pick $T(0)=c_{0}$ So,

$$
\begin{aligned}
& n / 2^{k}=0=> \\
& n=0
\end{aligned}
$$

Hmm. Easy, but not real useful...

## Binary Search (cont)

$r$ Okay, let's consider $T(1)=c_{0}$
$r$ So, let:

$$
\begin{aligned}
& n / 2^{k}=1 \quad=> \\
& n=2^{k} \quad=> \\
& k=\log _{2} n=\lg n
\end{aligned}
$$

## Binary Search (cont.)

$r$ Substituting back in (getting rid of k):

$$
\begin{aligned}
T(n) & =T(1)+c \lg (n) \\
& =c_{0}+c \lg (n) \\
& =O(\lg (n))
\end{aligned}
$$

## Example Recurrences

$r T(n)=T(n-1)+n$
$\theta\left(n^{2}\right)$

- Recursive algorithm that loops through the input to eliminate one item
$r T(n)=T(n / 2)+c \quad \Theta(\lg n)$
- Recursive algorithm that halves the input in one step
$r T(n)=T(n / 2)+n \quad \Theta(n)$
- Recursive algorithm that halves the input but must examine every item in the input
$r T(n)=2 T(n / 2)+1 \quad \Theta(n)$
- Recursive algorithm that splits the input into 2 halves and does a constant amount of other work


# Methods of Solving Recurrence Relations 

$\rightarrow$ Substitution

Draw the recursion tree, think about it

Guess at an upper bound, prove it by induction

## Exam!

## $r$ Focus on second half of semester

$r$ Data Structures

- Linked Lists
- BST
- Hash table
r Big Oh
r Labs
r Exam Samples
r Problems

