ECE244

Wael Aboulsaadat

Hash table Implementation

Acknowledgment: these slides are partially based on slides by; Prof. Schmidt from Drexel U., Prof. Shewchuk from UC Berkely, Kruse & Ryba Data Structure and Program Design in C++, Prof. Savitch Problem Solving in C++ and others

Hash table -- insert

```
bool HashTable::insert( const Element &elm)
{
    if( _nCount == _nSize)
       return (false); // table is full!
    int home = hashfunc(elm.key);
    int nIndex;
    for(nIndex=home; !is_empty(nIndex); nIndex = (nIndex + 1) % _nSize )
       if( elm.key == Hashtable[nIndex].key )
               return (false); // duplicate
    HashTable[nIndex] = elm;
    _nCount++;
    return (true);
```

Hash table -- search

```
bool HashTable::search( const int Key, Element& elm )
{
    int nHome = hashfunc(key);
    for(int nIndex = nHome; !is_empty(nIndex%_nSize) &&
                               nIndex < (nHome + _nSize); nIndex++ )</pre>
           if(Key == HashTable[nIndex % _nSize].key )
           {
               elm = HashTable[nIndex % _nSize];
               return (true);
           }
    return (false);
```

Analysis of Algorithms

Big-Oh Part 3

Recurrence Relations

- Can easily describe the runtime of recursive algorithms
- Can then be expressed in a closed form (not defined in terms of itself)
- Consider the linear search:

Eg. 1 - Linear Search

Recursively

Cook at an element (constant work, c), then search the remaining elements...

- T(n) = T(n-1) + c
- "The cost of searching n elements is the cost of looking at 1 element, plus the cost of searching n-1 elements"

Linear Seach (cont)

Caveat:

- You need to convince yourself (and others) that the single step, examining an element, *is* done in constant time.
- Can I get to the ith element in constant time, either directly, or from the (i-1)th element?
- Cook at the code

Methods of Solving Recurrence Relations

- Substitution (aka iteration)
- Traw the recursion tree, think about it
- Guess at an upper bound, prove it by induction

Linear Search (cont.)

We'll "unwind" a few of these (1) T(n) = T(n-1) + cBut, T(n-1) = T(n-2) + c, from above Substituting back in: T(n) = T(n-2) + c + c**Gathering like terms** T(n) = T(n-2) + 2c(2)

Linear Search (cont.)

Keep going: T(n) = T(n-2) + 2c T(n-2) = T(n-3) + c T(n) = T(n-3) + c + 2c T(n) = T(n-3) + c + 2c

One more:

T(n) = T(n-4) + 4c

(3)

(4)

Looking for Patterns

Note, the intermediate results are enumerated

We need to pull out patterns, to write a general expression for the kth unwinding

 This requires practice. It is a little bit art. The brain learns patterns, over time. Practice.

Be careful while simplifying after substitution

Eg. 1 – list of intermediates

Linear Search (cont.)

- An expression for the kth unwinding: $T(n) = T(n-k) + \frac{k}{k}c$
- We have 2 variables, k and n, but we have a relation
- T(d) is constant (can be determined) for some constant d (we know the algorithm)
- Choose any convenient # to stop.

Linear Search (cont.)

- C Let's decide to stop at T(0). When the list to search is empty, you're done...
- 0 is convenient, in this example... Let $n-k = 0 \implies n=k$
- Now, substitute n in everywhere for k: T(n) = T(n-n) + nc T(n) = T(0) + nc $= c_0 + cn = O(n)$ $(T(0) \text{ is some constant, } c_0)$

Binary Search

for an ordered array A, finds if x is in the array A[lo...hi]

BINARY-SEARCH (A, Io, hi, x)

```
if (lo > hi)
return FALSE
mid ← [(lo+hi)/2]
if x = A[mid]
return TRUE
if ( x < A[mid] )
```


If (x < A[mid]) BINARY-SEARCH (A, Io, mid-1, x) if (x > A[mid])

BINARY-SEARCH (A, mid+1, hi, x)

Example

Another Example

Analysis of BINARY-SEARCH

```
BINARY-SEARCH (A, Io, hi, x)
   if (lo > hi)
                                            constant time: c_1
       return FALSE
   mid \leftarrow \lfloor (lo+hi)/2 \rfloor
                                            constant time: c_2
   if x = A[mid]
                                            constant time: c_3
       return TRUE
   if (x < A[mid])
       BINARY-SEARCH (A, lo, mid-1, x) ← same problem of
   if (x > A[mid])
                                                  size n/2
       BINARY-SEARCH (A, mid+1, hi, x) — same problem of
                                                   size n/2
```

T(n) = T(n/2) + c

T(n) – running time for an array of size n

Let's do some quick substitutions: T(n) = T(n/2) + c(1)but T(n/2) = T(n/4) + c, so T(n) = T(n/4) + c + cT(n) = T(n/4) + 2c(2)T(n/4) = T(n/8) + cT(n) = T(n/8) + c + 2cT(n) = T(n/8) + 3c(3)

We need to write an expression for the kth unwinding (in n & k)

- Must find patterns, changes, as i=1, 2, ..., k
- This can be the hard part
- Do not get discouraged! Try something else...
- We'll re-write those equations...

We will then need to relate n and k

Result at ith unwinding			Ī
T(n)	= T(n/2) + c	= T(n/2¹) + 1 c	1
T(n)	= T(n/4) + 2c	= T(n/2²) + 2 c	2
T(n)	= T(n/8) + 3c	= T(n/2³) + 3 c	3
T(n)	= T(n/16) + 4c	= T(n/2⁴) + 4 c	4

After k unwindings:

 $T(n) = T(n/2^{k}) + kc$

- Need a convenient place to stop unwinding need to relate k & n
- \checkmark Let's pick T(0) = c₀ So,

 $n/2^{k} = 0 =>$

n=0

Hmm. Easy, but not real useful...

- \checkmark Okay, let's consider T(1) = c_0
- C So, let:
 - $n/2^{k} = 1 =>$ $n = 2^{k} =>$ $k = \log_{2}n = \lg n$

Substituting back in (getting rid of k): T(n) = T(1) + c lg(n) $= c_0 + c lg(n)$ = O(lg(n))

Example Recurrences

 $\Theta(n^2)$

Θ(n)

T(n) = T(n-1) + n

- Recursive algorithm that loops through the input to eliminate one item
- T(n) = T(n/2) + c $\Theta(lgn)$
 - Recursive algorithm that halves the input in one step

T(n) = T(n/2) + n

 Recursive algorithm that halves the input but must examine every item in the input

T(n) = 2T(n/2) + 1 $\Theta(n)$

 Recursive algorithm that splits the input into 2 halves and does a constant amount of other work

Methods of Solving Recurrence Relations

\rightarrow Substitution

Draw the recursion tree, think about it

Guess at an upper bound, prove it by induction

Exam!

Focus on second half of semester

Data Structures

- Linked Lists
- BST
- Hash table
- Big Oh
- Labs
- Exam Samples
- Problems