
Hash table Implementation

Wael Aboulsaadat

ECE244

Acknowledgment: these slides are partially based on slides by; Prof. Schmidt from Drexel U., Prof.
Shewchuk from UC Berkely, Kruse & Ryba Data Structure and Program Design in C++, Prof. Savitch

Problem Solving in C++ and others

Hash table -- insert
bool HashTable::insert(const Element &elm)
{

if(_nCount == _nSize)
return (false); // table is full!

int home = hashfunc(elm.key);
int nIndex;

for(nIndex=home; !is_empty(nIndex); nIndex = (nIndex + 1) % _nSize)
if(elm.key == Hashtable[nIndex].key)

return (false); // duplicate

HashTable[nIndex] = elm;

_nCount++;

return (true);

}

Hash table -- search
bool HashTable::search(const int Key, Element& elm)
{

int nHome = hashfunc(key);

for(int nIndex = nHome; !is_empty(nIndex%_nSize) &&
nIndex < (nHome + _nSize); nIndex++)

if(Key == HashTable[nIndex % _nSize].key)
{

elm = HashTable[nIndex % _nSize];
return (true);

}

return (false);
}

Analysis of Algorithms
Big-Oh
Part 3

Recurrence Relations
Can easily describe the runtime of recursive
algorithms

Can then be expressed in a closed form (not
defined in terms of itself)

Consider the linear search:

Eg. 1 - Linear Search

Recursively
Look at an element (constant work, c), then
search the remaining elements…

• T(n) = T(n-1) + c
• “The cost of searching n elements is the cost of

looking at 1 element, plus the cost of searching
n-1 elements”

Linear Seach (cont)
Caveat:

You need to convince yourself (and others) that
the single step, examining an element, *is* done
in constant time.

Can I get to the ith element in constant time,
either directly, or from the (i-1)th element?

Look at the code

Methods of Solving Recurrence
Relations

Substitution (aka iteration)

Draw the recursion tree, think about it

Guess at an upper bound, prove it by
induction

Linear Search (cont.)
We’ll “unwind” a few of these

T(n) = T(n-1) + c (1)
But, T(n-1) = T(n-2) + c, from above

Substituting back in:
T(n) = T(n-2) + c + c

Gathering like terms
T(n) = T(n-2) + 2c (2)

Linear Search (cont.)
Keep going:
T(n) = T(n-2) + 2c

T(n-2) = T(n-3) + c
T(n) = T(n-3) + c + 2c
T(n) = T(n-3) + 3c (3)

One more:
T(n) = T(n-4) + 4c (4)

Looking for Patterns
Note, the intermediate results are enumerated

We need to pull out patterns, to write a general
expression for the kth unwinding

This requires practice. It is a little bit art. The brain learns
patterns, over time. Practice.

Be careful while simplifying after substitution

Eg. 1 – list of intermediates

Result at ith unwinding i

T(n) = T(n-1) + 1c 1

T(n) = T(n-2) + 2c 2

T(n) = T(n-3) + 3c 3

T(n) = T(n-4) + 4c 4

Linear Search (cont.)
An expression for the kth unwinding:
T(n) = T(n-k) + kc

We have 2 variables, k and n, but we have a
relation
T(d) is constant (can be determined) for some
constant d (we know the algorithm)
Choose any convenient # to stop.

Linear Search (cont.)

Let’s decide to stop at T(0). When the list to
search is empty, you’re done…
0 is convenient, in this example…
Let n-k = 0 => n=k

Now, substitute n in everywhere for k:
T(n) = T(n-n) + nc
T(n) = T(0) + nc

= c0 + cn = O(n)
(T(0) is some constant, c0)

15

Binary Search
for an ordered array A, finds if x is in the array
A[lo…hi]

BINARY-SEARCH (A, lo, hi, x)

if (lo > hi)
return FALSE

mid ← (lo+hi)/2
if x = A[mid]

return TRUE
if (x < A[mid])

BINARY-SEARCH (A, lo, mid-1, x)
if (x > A[mid])

BINARY-SEARCH (A, mid+1, hi, x)

12111097532
1 2 3 4 5 6 7 8

midlo hi

Example

A[8] = {1, 2, 3, 4, 5, 7, 9, 11}
lo = 1 hi = 8 x = 7

mid = 4, lo = 5, hi = 8

mid = 6, A[mid] = x Found!119754321

119754321
1 2 3 4 5 6 7 8

8765

Another Example

A[8] = {1, 2, 3, 4, 5, 7, 9, 11}

– lo = 1 hi = 8 x = 6

mid = 4, lo = 5, hi =
8
mid = 6, A[6] = 7, lo = 5,
hi = 5

119754321

119754321
1 2 3 4 5 6 7 8

119754321 mid = 5, A[5] = 5, lo = 6,
hi = 5

NOT FOUND!119754321

low high

low

lowhigh

high

18

Analysis of BINARY-SEARCH

BINARY-SEARCH (A, lo, hi, x)
if (lo > hi)

return FALSE
mid ← (lo+hi)/2
if x = A[mid]

return TRUE
if (x < A[mid])

BINARY-SEARCH (A, lo, mid-1, x)
if (x > A[mid])

BINARY-SEARCH (A, mid+1, hi, x)

T(n) = T(n/2) + c
T(n) – running time for an array of size n

constant time: c2

same problem of
size n/2

constant time: c1

constant time: c3

same problem of
size n/2

Binary Search (cont)
Let’s do some quick substitutions:

T(n) = T(n/2) + c (1)
but T(n/2) = T(n/4) + c, so

T(n) = T(n/4) + c + c
T(n) = T(n/4) + 2c (2)

T(n/4) = T(n/8) + c
T(n) = T(n/8) + c + 2c
T(n) = T(n/8) + 3c (3)

Binary Search (cont.)

Result at ith unwinding i

T(n) = T(n/2) + c 1

T(n) = T(n/4) + 2c 2

T(n) = T(n/8) + 3c 3

T(n) = T(n/16) + 4c 4

Binary Search (cont)
We need to write an expression for the kth

unwinding (in n & k)
Must find patterns, changes, as i=1, 2, …, k
This can be the hard part
Do not get discouraged! Try something else…
We’ll re-write those equations…

We will then need to relate n and k

Binary Search (cont)

Result at ith unwinding i

T(n) = T(n/2) + c =T(n/21) + 1c 1

T(n) = T(n/4) + 2c =T(n/22) + 2c 2

T(n) = T(n/8) + 3c =T(n/23) + 3c 3

T(n) = T(n/16) + 4c =T(n/24) + 4c 4

Binary Search (cont)
After k unwindings:
T(n) = T(n/2k) + kc

Need a convenient place to stop unwinding –
need to relate k & n
Let’s pick T(0) = c0 So,

n/2k = 0 =>
n=0

Hmm. Easy, but not real useful…

Binary Search (cont)
Okay, let’s consider T(1) = c0

So, let:

n/2k = 1 =>
n = 2k =>
k = log2n = lg n

Binary Search (cont.)
Substituting back in (getting rid of k):
T(n) = T(1) + c lg(n)

= c0 + c lg(n)
= O(lg(n))

Example Recurrences
T(n) = T(n-1) + n Θ(n2)

Recursive algorithm that loops through the input to
eliminate one item

T(n) = T(n/2) + c Θ(lgn)
Recursive algorithm that halves the input in one step

T(n) = T(n/2) + n Θ(n)
Recursive algorithm that halves the input but must
examine every item in the input

T(n) = 2T(n/2) + 1 Θ(n)
Recursive algorithm that splits the input into 2 halves and
does a constant amount of other work

Methods of Solving Recurrence
Relations

 Substitution

Draw the recursion tree, think about it

Guess at an upper bound, prove it by induction

Exam!
Focus on second half of semester

Data Structures
Linked Lists
BST
Hash table

Big Oh

Labs

Exam Samples

Problems

	Slide Number 1
	Hash table -- insert
	Hash table -- search
	Slide Number 4
	Recurrence Relations
	 Eg. 1 - Linear Search
	Linear Seach (cont)
	Methods of Solving Recurrence Relations
	Linear Search (cont.)
	Linear Search (cont.)
	Looking for Patterns
	Eg. 1 – list of intermediates
	Linear Search (cont.)
	Linear Search (cont.)
	Binary Search
	Example
	Another Example
	Analysis of BINARY-SEARCH
	Binary Search (cont)
	Binary Search (cont.)
	Binary Search (cont)
	Binary Search (cont)
	Binary Search (cont)
	Binary Search (cont)
	Binary Search (cont.)
	Example Recurrences
	Methods of Solving Recurrence Relations
	Exam!

