ECE244

Wael Aboulsaadat

Hashtables

Acknowledgment: these slides are partially based on slides by; Prof. Schmidt from Drexel U., Prof. Shewchuk from UC Berkely, Kruse \& Ryba Data Structure and Program Design in C++, Prof. Savitch Problem Solving in C++ and others

What is a Hash Table?

r The simplest kind of hash table is an array of records.
\checkmark This example has 701 records.

An array of records

What is a Hash Table?

r Each record has a special field, called its key.
r In this example, the key is a long integer field called Number.
[0] [1] [2] [3]

What is a Hash Table?

r The number might be a person's identification number, and the rest of the record has information about the person.

What is a Hash Table?

r When a hash table is in use, some spots contain valid records, and other spots are "empty".

Inserting a New Record

r In order to insert a new record, the key must somehow be converted to an array index.

r The index is called the hash value of the key.

[0]	[1]	[2]	[3]	[4]	[5]	[700]
	营	易		O		Q

Inserting a New Record

r Typical way to create a hash value:
(Number mod 701)

What is (580625685 mod 701)?

Inserting a New Record

r Typical way to create a hash value:
(Number mod 701)
What is (580625685 mod 701)?

Inserting a New Record

r The hash value is used for the location of the new record.

Inserting a New Record

r The hash value is used for the location of the new record.

[0]	[1]	[2]	[3]	[4]	[5]	[700]
	量	Q	5	2)		Q

Collisions!

r Here is another new record to insert, with a hash value of 2 .
r Collision Handling:
Open Addressing

My hash value is [2].

Separate Chaining

Open Addressing: Linear Probing

r This is called a collision, because there is already another valid record at [2].

When a collision

 occurs,move forward until you find an empty spot.

Open Addressing: Linear Probing

r This is called a collision, because there is already another valid record at [2].

When a collision occurs,
move forward until you find an empty spot.

Open Addressing: Linear Probing

r This is called a collision, because there is already another valid record at [2].

When a collision

 occurs,move forward until you find an empty spot. [0] [1] [2] [3] [4] [5]

Open Addressing: Linear Probing

r This is called a collision, because there is already another valid record at [2].

The new record goes

 in the empty spot.

Searching for a Key

r The data that's attached to a key can be found fairly quickly.
r Note: assuming open addressing/ linear probing

Searching for a Key

1) Calculate the hash value.
2) Check that location of the array for the key.

Not me.

[0]	[1]	[2]	[3]	[4]	[5]		[700]
			3	O.			20.

Searching for a Key

r Keep moving forward until you find the key, or you reach an empty spot.

Not me.

Searching for a Key

r Keep moving forward until you find the key, or you reach an empty spot.

My hash
value is [2].

Not me.

[0]	[1]	[2]	[3]	[4]	[5		[700]
			6	O			Q

Searching for a Key

r Keep moving forward until you find the key, or you reach an empty spot.

My hash
value is [2].

Searching for a Key

σ When the item is found, the
information can be copied to
σ When the item is found, the
information can be copied to the necessary location.

Number 701466868

the necessary location.

Deleting a Record

r Records may also be deleted from a hash table.

Deleting a Record

r Records may also be deleted from a hash table.
r But the location must not be left as an ordinary "empty spot" since that could interfere with searches (Note: assuming open addressing/ linear probing).

Deleting a Record

r Records may also be deleted from a hash table.
r But the location must not be left as an ordinary "empty spot" since that could interfere with searches.
r The location must be marked in some special way so that a search can tell that the spot used to have something in it.

Problem with Linear Probing

Number 701466868

My hash
value is [2].

Open Addressing: Quadratic Probing

\checkmark If collision occurs \leftarrow check $H(x)+1$ else

$$
\begin{gathered}
H(x)+4 \text { else } \\
H(x)+9 \text { else } \\
H(x)+16
\end{gathered}
$$

$\mathrm{H}($ Key $)=\left(\right.$ Key mod 701) $+\mathrm{i}^{2}$

Open Addressing: Quadratic Probing

r If collision occurs check $H(x)+1$ else \leftarrow

$$
\begin{gathered}
H(x)+4 \text { else } \\
H(x)+9 \text { else } \\
H(x)+16
\end{gathered}
$$

$\mathrm{H}($ Key $)=\left(\right.$ Key mod 701) $+\mathrm{i}^{\mathbf{2}}$

Problem with Open Addressing

r Table can become full with dead items

[0]	[1]	[2]	[3]				[700]
	8	Q	3				Q

Separate Chaining

r A List of elements (bucket) that has same key

Analysis of Hashing with Chaining

r Worst case

- All keys hash into the same bucket
- a single linked list.
- insert, delete, find take $O(n)$ time.
r Average case
- Keys are uniformly distributed into buckets
- $O(N / B)$: N is the number of elements in a hash table, B is the number of buckets.

Re-Hashing

r If table gets too full, operations will take too long.
r Build another table, twice as big
r Insert every element again to this table
r Rehash after a percentage of the table becomes full (70\%)

Issues with Hashing

r What do we lose?

- Operations that require ordering are inefficient
- FindMax: O(n)
- FindMin: O(n)
$O(\log n)$ Balanced binary tree
$O(\log n)$ Balanced binary tree
r What do we gain?
- Insert: O(1)
- Delete: O(1)
- Find: $O(1)$

O(log n) Balanced binary tree $O(\log n)$ Balanced binary tree $O(\log n)$ Balanced binary tree

