
Hashtables

Wael Aboulsaadat

ECE244

Acknowledgment: these slides are partially based on slides by; Prof. Schmidt from Drexel U., Prof.
Shewchuk from UC Berkely, Kruse & Ryba Data Structure and Program Design in C++, Prof. Savitch

Problem Solving in C++ and others

The simplest kind of hash
table is an array of records.

This example has 701
records.

[0] [1] [2] [3] [4] [5]

An array of records

. . .

[700]

What is a Hash Table ?

What is a Hash Table ?

Each record has a special
field, called its key.

In this example, the key is
a long integer field called
Number.

[0] [1] [2] [3] [4] [5]

. . .

[700]

Number 506643548

The number might be a
person's identification
number, and the rest of the
record has information
about the person.

[0] [1] [2] [3] [4] [5]

. . .

[700]

Number 506643548

What is a Hash Table ?

When a hash table is in use,
some spots contain valid
records, and other spots are
"empty".

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .

What is a Hash Table ?

In order to insert a new
record, the key must
somehow be converted to an
array index.

The index is called the hash
value of the key.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .

Number 580625685

Inserting a New Record

Typical way to create a
hash value:

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .

(Number mod 701)

What is (580625685 mod 701) ?

Inserting a New Record
Number 580625685

Typical way to create a
hash value:

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .

(Number mod 701)
3

Number 580625685

What is (580625685 mod 701) ?

Inserting a New Record

The hash value is used
for the location of the
new record.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .

[3]

Inserting a New Record
Number 580625685

The hash value is used for
the location of the new
record.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685

Inserting a New Record

Here is another new
record to insert, with
a hash value of 2.

Collision Handling:
Open Addressing
Separate Chaining

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685

Number 701466868

My hash
value is [2].

Collisions!

This is called a collision,
because there is already
another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685

When a collision
occurs,

move forward until you
find an empty spot.

Open Addressing: Linear Probing
Number 701466868

This is called a collision,
because there is already
another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685

When a collision
occurs,

move forward until you
find an empty spot.

Open Addressing: Linear Probing
Number 701466868

This is called a collision,
because there is already
another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685

When a collision
occurs,

move forward until you
find an empty spot.

Number 701466868

Open Addressing: Linear Probing

This is called a collision,
because there is already
another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

The new record goes
in the empty spot.

Open Addressing: Linear Probing

The data that's attached to
a key can be found fairly
quickly.

Note: assuming open
addressing/ linear probing

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

Searching for a Key

1) Calculate the hash value.

2) Check that location of the array
for the key.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

My hash
value is [2].

Not me.

Searching for a Key
Number 701466868

Keep moving forward until you
find the key, or you reach an
empty spot.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

My hash
value is [2].

Not me.

Searching for a Key
Number 701466868

Keep moving forward until you
find the key, or you reach an
empty spot.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

My hash
value is [2].

Not me.

Number 701466868

Searching for a Key

Keep moving forward until you
find the key, or you reach an
empty spot.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

My hash
value is [2].

Yes!

Searching for a Key
Number 701466868

When the item is found, the
information can be copied to
the necessary location.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash
value is [2].

Yes!

Searching for a Key

Records may also be deleted from a hash table.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Please
delete me.

Deleting a Record

Records may also be deleted from a hash table.

But the location must not be left as an ordinary
"empty spot" since that could interfere with searches
(Note: assuming open addressing/ linear probing).

[0] [1] [2] [3] [4] [5] [700]
Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Deleting a Record

[0] [1] [2] [3] [4] [5] [700]
Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Records may also be deleted from a hash table.
But the location must not be left as an ordinary
"empty spot" since that could interfere with
searches.
The location must be marked in some special way so
that a search can tell that the spot used to have
something in it.

Deleting a Record

Clustering

Problem with Linear Probing

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322Number 580625685 Number 701466868

Number 701466868

My hash
value is [2].

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685

Number 701466868

My hash
value is [2].

Open Addressing: Quadratic Probing

If collision occurs 
check H(x) + 1 else

H(x) + 4 else
H(x) + 9 else

H(x) + 16
…

H(Key)=(Key mod 701) + i2

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685

Number 701466868

My hash
value is [2].

Open Addressing: Quadratic Probing

If collision occurs
check H(x) + 1 else 

H(x) + 4 else
H(x) + 9 else

H(x) + 16
…

H(Key)=(Key mod 701) + i2

Table can become
full with dead items

Problem with Open Addressing
Number 701466868

[0] [1] [2] [3] [4] [5] [700]
Number 233667136Number 281942902 Number 155778322Number 580625685 Number 701466868

A List of elements (bucket)
that has same key

Separate Chaining

[0]

[1]

[2]

[3]

[700]

Number 506643548Number 233667136

Number 281942902

Number 155778322

Number 580625685 Number 701466868

30

Worst case
All keys hash into the same bucket
a single linked list.
insert, delete, find take O(n) time.

Average case
Keys are uniformly distributed into buckets
O(N/B): N is the number of elements in a hash table, B is
the number of buckets.

Analysis of Hashing with Chaining

If table gets too full, operations will take too
long.

Build another table, twice as big

Insert every element again to this table

Rehash after a percentage of the table becomes
full (70%)

Re-Hashing

32

What do we lose?
Operations that require ordering are inefficient
FindMax: O(n) O(log n) Balanced binary tree
FindMin: O(n) O(log n) Balanced binary tree

What do we gain?
Insert: O(1) O(log n) Balanced binary tree
Delete: O(1) O(log n) Balanced binary tree
Find: O(1) O(log n) Balanced binary tree

Issues with Hashing

	Slide Number 1
	What is a Hash Table ?
	What is a Hash Table ?
	What is a Hash Table ?
	What is a Hash Table ?
	Inserting a New Record
	Inserting a New Record
	Inserting a New Record
	Inserting a New Record
	Inserting a New Record
	Collisions!
	Open Addressing: Linear Probing
	Open Addressing: Linear Probing
	Open Addressing: Linear Probing
	Open Addressing: Linear Probing
	Searching for a Key
	Searching for a Key
	Searching for a Key
	Searching for a Key
	Searching for a Key
	Searching for a Key
	Deleting a Record
	Deleting a Record
	Deleting a Record
	Problem with Linear Probing
	Open Addressing: Quadratic Probing
	Open Addressing: Quadratic Probing
	Problem with Open Addressing
	Separate Chaining
	Analysis of Hashing with Chaining
	Re-Hashing
	Issues with Hashing

