
University of Toronto

CSC301: Introduction to Software
Engineering

Lecture 1

Wael Aboulsaadat

University of Toronto

CSC301: Introduction to Software Engineering

Course Info…
 Instructor: Wael Aboulsaadat
 Lecture: Wednesday 6:10-8:00 @ BA 1180
 Office Hour: Wednesday 4:00 5:00pm @ BA 4261
 Email: wael@cs.toronto.edu
 Web page: Blackboard http://portal.utoronto.ca/
 Course Software: check External Links in Blackboard (next week)
 Tutorial: Wednesday 8:10pm 9:00pm @ BA 2135 && BA 2139
 TA: Atalay Ozgovde <atalay@cs.toronto.edu>
 TA: Jennifer Horkoff < jenhork@cs.toronto.edu>

http://portal.utoronto.ca/�

University of Toronto

CSC301: Introduction to Software Engineering

Recommended Text Book(s)
1. “Object-Oriented Software Engineering: Using

UML, Patterns and Java”. Bernd Bruegge and
Allen H. Dutoit
ISBN: 978-0072465631

2. “Agile Software Development”. Alistair Cockburn
ISBN: 978-0201699692

3. “Head First Design Patterns”. (Head First).
Elisabeth Freeman, Eric Freeman, Bert Bates,
and Kathy Sierra
ISBN-13: 978-0596007126

http://www.amazon.com/gp/reader/0201699699/ref=sib_dp_pt�
http://www.amazon.com/gp/product/images/0596007124/sr=1-1/qid=1210782040/ref=dp_image_0?ie=UTF8&n=283155&s=books&qid=1210782040&sr=1-1�

University of Toronto

CSC301: Introduction to Software Engineering

Grading

 Project 65 %
 Exam 35 %

University of Toronto

CSC301: Introduction to Software Engineering

Course Topics
 Introduction to Soft Eng
 Object Oriented Analysis
 Object Oriented Design
 Design Patterns
 Software Development Life Cycle
 Agile Software Development
 Refactoring
 Test Driven Development
 Software Project Management

University of Toronto

CSC301: Introduction to Software Engineering

20

Software Engineering: definition

Software Engineering is a collection of techniques,
methodologies and tools that help
with the production of

 a high quality software system
 with a given budget
 before a given deadline

while change occurs.

University of Toronto

CSC301: Introduction to Software Engineering

Software Engineering: problem solving
approach

 Methodologies:
̶ Collection of techniques applied across software

development and unified by a philosophical approach

 Tools:
̶ Instrument or automated systems to accomplish a

technique

University of Toronto

CSC301: Introduction to Software Engineering

Software Engineering: activities

1. Analysis:
̶ Understand the nature of the problem and break the problem

into pieces

2. Synthesis:
̶ Make components and put them together into a large structure

University of Toronto

CSC301: Introduction to Software Engineering

Software Engineering: the crisis

 What’s the problem?

University of Toronto

CSC301: Introduction to Software Engineering

Software Engineering: the crisis

 Example

University of Toronto

CSC301: Introduction to Software Engineering

Software Engineering: the crisis

 More examples

University of Toronto

CSC301: Introduction to Software Engineering

Software Engineering: the crisis

 More examples!

University of Toronto

CSC301: Introduction to Software Engineering

Requirements

Software

What’s happening ?!

University of Toronto

CSC301: Introduction to Software Engineering

Factors affecting the quality of software
 Complexity:

̶ The system is so complex that no single programmer can
understand it anymore

̶ The introduction of one bug fix causes another bug

 Change:
̶ The “Entropy” of a software system increases with each change:

Each implemented change erodes the structure of the system
which makes the next change even more expensive (“Second
Law of Software Dynamics”).

̶ As time goes on, the cost to implement a change will be too
high, and the system will then be unable to support its intended
task. This is true of all systems, independent of their application
domain or technological base.

University of Toronto

CSC301: Introduction to Software Engineering

Dealing with Complexity

1. Abstraction
2. Decomposition
3. Hierarchy

University of Toronto

CSC301: Introduction to Software Engineering

Dealing with Complexity: abstraction

 Inherent human limitation to deal with complexity
̶ The 7 +- 2 phenomena

 Chunking: Group collection of objects

 Ignore unessential details: => Models

University of Toronto

CSC301: Introduction to Software Engineering

Dealing with Complexity: abstraction models
 System Model:

̶ Object Model: What is the structure of the system? What are the
objects and how are they related?

̶ Functional model: What are the functions of the system? How is
data flowing through the system?

̶ Dynamic model: How does the system react to external events?
How is the event flow in the system ?

 Task Model:
̶ PERT Chart: What are the dependencies between the tasks?
̶ Schedule: How can this be done within the time limit?
̶ Org Chart: What are the roles in the project or organization?

 Issues Model:
̶ What are the open and closed issues? What constraints were

posed by the client? What resolutions were made?

University of Toronto

CSC301: Introduction to Software Engineering

Dealing with Complexity: decomposition
 A technique used to master complexity (“divide and conquer”)

 Functional decomposition
̶ The system is decomposed into modules
̶ Each module is a major processing step (function) in the application

domain
̶ Modules can be decomposed into smaller modules

 Object-oriented decomposition
̶ The system is decomposed into classes (“objects”)
̶ Each class is a major abstraction in the application domain
̶ Classes can be decomposed into smaller classes

University of Toronto

CSC301: Introduction to Software Engineering

Top Level functions

Level 1 functions

Level 2 functions

Machine Instructions

System
Function

Load R10 Add R1, R10

Read Input Transform Produce
Output

Transform Produce
OutputRead Input

Dealing with Complexity: functional
decomposition

University of Toronto

CSC301: Introduction to Software Engineering

Dealing with Complexity: decomposition
 A technique used to master complexity (“divide and conquer”)

 Object-oriented decomposition
̶ The system is decomposed into classes (“objects”)
̶ Each class is a major abstraction in the application domain
̶ Classes can be decomposed into smaller classes

University of Toronto

CSC301: Introduction to Software Engineering

Dealing with Complexity: decomposition
 A technique used to master complexity (“divide and conquer”)

 Object-oriented decomposition
̶ The system is decomposed into classes (“objects”)
̶ Each class is a major abstraction in the application domain
̶ Classes can be decomposed into smaller classes

University of Toronto

CSC301: Introduction to Software Engineering

Dealing with Complexity: decomposition
 A technique used to master complexity (“divide and conquer”)

 Object-oriented decomposition
̶ The system is decomposed into classes (“objects”)
̶ Each class is a major abstraction in the application domain
̶ Classes can be decomposed into smaller classes

public class BriefCase {

int Capacity;
int Weight;

public void Open() {…}
public void Close() {…}
public void Carry() {…}
public void SitOn() {…}

University of Toronto

CSC301: Introduction to Software Engineering

Dealing with Complexity: decomposition
 A technique used to master complexity (“divide and conquer”)

 Object-oriented decomposition
̶ The system is decomposed into classes (“objects”)
̶ Each class is a major abstraction in the application domain
̶ Classes can be decomposed into smaller classes

University of Toronto

CSC301: Introduction to Software Engineering

Dealing with Complexity: decomposition
 A technique used to master complexity (“divide and conquer”)

 Object-oriented decomposition
̶ The system is decomposed into classes (“objects”)
̶ Each class is a major abstraction in the application domain
̶ Classes can be decomposed into smaller classes

public class BriefCase {

int Capacity;
int Weight;

public void Open() {…}
public void Close() {…}
public void Carry() {…}
public void SitOn() {…}

University of Toronto

CSC301: Introduction to Software Engineering

Dealing with Complexity: hierarchy
 We got abstractions and decomposition

̶ This leads us to chunks (classes, objects) which we view with
object model

 Another way to deal with complexity is to provide simple
relationships between the chunks

 One of the most important relationships is hierarchy

 2 important hierarchies
̶ "Part of" hierarchy
̶ "Is-kind-of" hierarchy

University of Toronto

CSC301: Introduction to Software Engineering

Dealing with Complexity: part of hierarchy

Computer

I/O Devices CPU Memory

Cache ALU Program
Counter

University of Toronto

CSC301: Introduction to Software Engineering

Dealing with Complexity: part of hierarchy

Computer

I/O Devices CPU Memory

Cache ALU Program
Counter

University of Toronto

CSC301: Introduction to Software Engineering

Cell

Muscle Cell Blood Cell Nerve Cell

Striate Smooth Red White Cortical Pyramidal

Dealing with Complexity: is-kind-of hierarchy

University of Toronto

CSC301: Introduction to Software Engineering

So where are we right now?
 Three ways to deal with complexity:

̶ Abstraction
̶ Decomposition
̶ Hierarchy

 How can we do it right?

University of Toronto

CSC301: Introduction to Software Engineering

Requirements

Software

Software Development Models

Waterfall model
Agile model
Extreme programming model
Test-driven development model
….

University of Toronto

CSC301: Introduction to Software Engineering

UML

University of Toronto

CSC301: Introduction to Software Engineering

Why model software?
 Software is getting increasingly more complex

̶ Windows XP > 40 MN lines of code
̶ A single programmer cannot manage this amount of code in its

entirety.

 Code is not easily understandable by developers who
did not write it

 We need simpler representations for complex systems
̶ Modeling is a mean for dealing with complexity

University of Toronto

CSC301: Introduction to Software Engineering

Systems, Models and Views
 A model is an abstraction describing a subset of a system
 A view depicts selected aspects of a model
 A notation is a set of graphical or textual rules for depicting

views
 Views and models of a single system may overlap each

other

Examples:
 System: Aircraft
 Models: Flight simulator, scale model
 Views: All blueprints, electrical wiring, fuel system

University of Toronto

CSC301: Introduction to Software Engineering

Systems, Models and Views

University of Toronto

CSC301: Introduction to Software Engineering

UML: First Pass
 You can model 80% of most problems by using about 20

% UML

 We teach you those 20%

University of Toronto

CSC301: Introduction to Software Engineering

UML First Pass
 Use case Diagrams

̶ Describe the functional behavior of the system as seen by the user.
 Class diagrams

̶ Describe the static structure of the system: Objects, Attributes,
Associations

 Sequence diagrams
̶ Describe the dynamic behavior between actors and the system and

between objects of the system
 State chart diagrams

̶ Describe the dynamic behavior of an individual object (essentially a
finite state automaton)

 Activity Diagrams
̶ Model the dynamic behavior of a system, in particular the workflow

(essentially a flowchart)

University of Toronto

CSC301: Introduction to Software Engineering

UML first pass: Use case diagrams

WatchUser WatchRepairPerson

ReadTime

SetTime

ChangeBattery

Actor

Use casePackage
Watch

Use case diagrams represent the functionality of the system
from user’s point of view

University of Toronto

CSC301: Introduction to Software Engineering

UML first pass: Class diagrams

1

2

push()
release()

1

1

blinkIdx
blinkSeconds()
blinkMinutes()
blinkHours()
stopBlinking()
referesh()

LCDDisplay Battery
load

1

2

1

Time
now

1

Watch

Class

Association

Multiplicity

Attribute
Operations

Class diagrams represent the structure of the system

state
PushButton

University of Toronto

CSC301: Introduction to Software Engineering

UML first pass: Sequence diagram

Sequence diagrams represent the behavior as interactions

University of Toronto

CSC301: Introduction to Software Engineering

UML first pass: State-chart diagrams for
objects with interesting dynamic behavior

Represent behavior as states and transitions

University of Toronto

CSC301: Introduction to Software Engineering

Other UML Notations

UML provide other notations that we will be
introduced in subsequent lectures, as needed.

 Implementation diagrams
̶ Component diagrams
̶ Deployment diagrams
̶ Introduced in lecture on System Design

 Object constraint language
̶ Introduced in lecture on Object Design

University of Toronto

CSC301: Introduction to Software Engineering

UML Core Conventions
 Rectangles are classes or instances
 Ovals are functions or use cases
 Instances are denoted with an underlined names

̶ myWatch:SimpleWatch
̶ Joe:Firefighter

 Types are denoted with non underlined names
̶ SimpleWatch
̶ Firefighter

 Diagrams are graphs
̶ Nodes are entities
̶ Arcs are relationships between entities

University of Toronto

CSC301: Introduction to Software Engineering

Use Case Diagrams
 Used during requirements

elicitation to represent external
behavior

 Actors represent roles, that is,
a type of user of the system

 Use cases represent a
sequence of interaction for a
type of functionality

 The use case model is the set
of all use cases. It is a
complete description of the
functionality of the system and
its environment

Passenger

PurchaseTicket

University of Toronto

CSC301: Introduction to Software Engineering

Actors
 An actor models an external entity which

communicates with the system:
̶ User
̶ External system
̶ Physical environment

 An actor has a unique name and an
optional description.

 Examples:
̶ Passenger: A person in the train
̶ GPS satellite: Provides the system with GPS

coordinates

Passenger

University of Toronto

CSC301: Introduction to Software Engineering

Use Case
A use case represents a class of

functionality provided by the system
as an event flow.

A use case consists of:
 Unique name
 Participating actors
 Entry conditions
 Flow of events
 Exit conditions
 Special requirements

PurchaseTicket

University of Toronto

CSC301: Introduction to Software Engineering

Use Case Diagram: Example
Name: Purchase ticket

Participating actor: Passenger

Entry condition:
 Passenger standing in front of

ticket distributor.
 Passenger has sufficient

money to purchase ticket.

Exit condition:
 Passenger has ticket.

Event flow:
1. Passenger selects the number

of zones to be traveled.
2. Distributor displays the amount

due.
3. Passenger inserts money, of at

least the amount due.
4. Distributor returns change.
5. Distributor issues ticket.

Anything missing?

Exceptional cases!

University of Toronto

CSC301: Introduction to Software Engineering

The <<extends>> Relationship
 <<extends>> relationships

represent exceptional or
seldom invoked cases.

 The exceptional event flows
are factored out of the main
event flow for clarity.

 Use cases representing
exceptional flows can extend
more than one use case.

 The direction of a <<extends>>
relationship is to the extended
use case

University of Toronto

CSC301: Introduction to Software Engineering

The <<includes>> Relationship
 <<includes>> relationship

represents behavior that is
factored out of the use case.

 <<includes>> behavior is
factored out for reuse, not
because it is an exception.

 The direction of a <<includes>>
relationship is to the using use
case (unlike <<extends>>
relationships).

University of Toronto

CSC301: Introduction to Software Engineering

Use Case Diagrams: Summary

 Use case diagrams represent external behavior

 Use case diagrams are useful as an index into the use
cases

 Use case descriptions provide meat of model, not the
use case diagrams.

 All use cases need to be described for the model to be
useful.

University of Toronto

CSC301: Introduction to Software Engineering

Class Diagrams

 Class diagrams represent the structure of the system.
 Used

̶ during requirements analysis to model problem domain concepts
̶ during system design to model subsystems and interfaces
̶ during object design to model classes.

University of Toronto

CSC301: Introduction to Software Engineering

Classes

 A class represent a concept
 A class encapsulates state (attributes) and behavior

(operations).
 Each attribute has a type.
 Each operation has a signature.
 The class name is the only mandatory information.

zone2price
getZones()
getPrice()

TarifSchedule

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

Name

Attributes

Operations

Signature

TarifSchedule

University of Toronto

CSC301: Introduction to Software Engineering

Price
Zone

Associations

 Associations denote relationships between classes.
 The multiplicity of an association end denotes how many objects the

source object can legitimately reference.

Enumeration getZones()
Price getPrice(Zone)

TarifSchedule TripLeg

* *

University of Toronto

CSC301: Introduction to Software Engineering

 An aggregation is a special case of association denoting a “consists of”
hierarchy.

 The aggregate is the parent class, the components are the children
class.

 A solid diamond denotes composition, a strong form of aggregation
where components cannot exist without the aggregate. (Bill of Material)

UML: Aggregation

Car

Motor

Car

Radio

University of Toronto

CSC301: Introduction to Software Engineering

How to code a has-relation ?
 X has Y (composition)

public class X
{

Y _yObject;

public X()
{

_yObject = new Y(); // creating Y
}

public void someMethod()
{

_yObject.doSomething();
}

public void destroy()
{

_yObject.destroy();
_yObject= null; // deleting Y from memory

}

}

University of Toronto

CSC301: Introduction to Software Engineering

How to code a uses-relation ?
 X uses Y (aggregation)

public class X
{

Y _yObject;
public X()
{
}

public void setY(Y yObject)
{

_yObject = yObject;
}

public void someMethod()
{

_yObject.doSomething();
}

public void destroy()
{

_yObject = null;// don’t delete
}
}

public class Y
{

public Y()
{

}

public void doSomething()
{

}
}

public class SomeManager
{

Y _yObject;
public SomeManager()
{

}

public void init()
{

_yObject = new Y();

X xObject;
xObject = new X();
xobject.setY(_yObject);

}

public void destroy()
{

_yObject.destroy();
}

}

University of Toronto

CSC301: Introduction to Software Engineering

How to code a uses-relation ?
 X uses Y (aggregation)

public class X
{

SomeManager _someManager;

public X(SomeManager someManager)
{

_someManager = someManager;
}

public void someMethod()
{

yObject = someManager.getY();
// use yObject...

}

}

public class SomeManager
{

Y _yObject;

public SomeManager()
{

_yObject = new Y();
}

public void getY()
{

return _yObject;
}

public void destroy()
{

_yObject.destroy();
}

}

University of Toronto

CSC301: Introduction to Software Engineering

How to code a uses-relation ?
 X uses Y (aggregation)

public class X
{

public X()
{

}

public void someMethod()
{

yObject = Y.getInstance();
// use yObject...

}

}

public class Y
{

protected static Y thisY;

public static Y getInstance()
{

if(thisY == null)
thisY = new Y();

return thisY;
}

}

University of Toronto

CSC301: Introduction to Software Engineering

Qualifiers

 Qualifiers can be used to reduce the multiplicity
of an association.

Directory
File

filename

Without qualification
1 *

With qualification

Directory File
1

filename
0..1

University of Toronto

CSC301: Introduction to Software Engineering

Inheritance

 The children classes inherit the attributes and
operations of the parent class.

 Inheritance simplifies the model by eliminating
redundancy.

Button

ZoneButtonCancelButton

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Analysis & Design

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Analysis & Design
 OOA:

̶ Input: written requirements statement, a formal vision document,
interviews with stakeholders or other interested parties

̶ Target: produce a conceptual model of the information that exists
in the area being analyzed

̶ Output: set of use cases, one or more UML class diagrams, and a
number of interaction diagrams. It may also include some kind of
user interface mock-up

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Analysis: creating a class
diagram

 Identify classes

 Identify relations between classes

OOA Use cases

Class diagrams

Sequence diagrams

Interviews

Observation
Manuals/

Forms

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Analysis & Design
 OOD:

̶ Input: conceptual model produced in OOA

̶ Target: a model of the solution domain, how the system is to be built,
given the constraints identified in the OOA

̶ Output: a model of the solution domain, how the system is to be
built.., specification of implementation classes and interfaces

OOA OOD

University of Toronto

CSC301: Introduction to Software Engineering

How to identify a class ?

 nouns → class

 verbs → methods

 adjectives → attribute/member-variables

University of Toronto

CSC301: Introduction to Software Engineering

Noun/Verb/Adjective example
The circuit controller shall support digital and analog circuits.
The circuit controller shall contain 32 DSPs. When the circuit
controller receives a request to setup a circuit, it shall allocate a
DSP to the circuit.

 We discover the following classes from the requirement
description

̶ CircuitController
̶ DigitalCircuit
̶ AnalogCircuit
̶ DSP
̶ ?

 What functions can you discover?
 What is implicit here?

̶

University of Toronto

CSC301: Introduction to Software Engineering

How to identify relations ?

 Owns/has it?

 Uses it?

 Is type of ?

University of Toronto

CSC301: Introduction to Software Engineering

Analysis Example

	CSC301: Introduction to Software Engineering��Lecture 1
	Course Info…
	Recommended Text Book(s)
	Grading
	Course Topics
	Software Engineering: definition
	Software Engineering: problem solving approach
	Software Engineering: activities
	Software Engineering: the crisis
	Software Engineering: the crisis
	Software Engineering: the crisis
	Software Engineering: the crisis
	What’s happening ?!
	Factors affecting the quality of software
	Dealing with Complexity
	Dealing with Complexity: abstraction
	Dealing with Complexity: abstraction models
	Dealing with Complexity: decomposition
	Dealing with Complexity: functional decomposition
	Dealing with Complexity: decomposition
	Dealing with Complexity: decomposition
	Dealing with Complexity: decomposition
	Dealing with Complexity: decomposition
	Dealing with Complexity: decomposition
	Dealing with Complexity: hierarchy
	Dealing with Complexity: part of hierarchy
	Dealing with Complexity: part of hierarchy
	Dealing with Complexity: is-kind-of hierarchy
	So where are we right now?
	Software Development Models
	UML	
	Why model software?
	Systems, Models and Views
	Systems, Models and Views
	UML: First Pass	
	UML First Pass
	UML first pass: Use case diagrams
	UML first pass: Class diagrams
	UML first pass: Sequence diagram
	UML first pass: State-chart diagrams for objects with interesting dynamic behavior
	Other UML Notations
	UML Core Conventions
	Use Case Diagrams
	Actors
	Use Case
	Use Case Diagram: Example
	The <<extends>> Relationship
	The <<includes>> Relationship
	Use Case Diagrams: Summary
	Class Diagrams
	Classes
	Associations
	UML: Aggregation
	How to code a has-relation ?
	How to code a uses-relation ?
	How to code a uses-relation ?
	How to code a uses-relation ?
	Qualifiers
	Inheritance
	Object Oriented Analysis & Design
	Object Oriented Analysis & Design
	Object Oriented Analysis: creating a class diagram
	Object Oriented Analysis & Design
	How to identify a class ?
	Noun/Verb/Adjective example
	How to identify relations ?
	Analysis Example

