CSC301: Introduction to
Software Engineering

Lecture 10

Wael Aboulsaadat

University of Toronto 0

Revisiting OOD:
cohesion and coupling

University of Toronto 1

CSC301: Introduction to Software Engineering

Increase cohesion where possible

m A subsystem or module has high cohesion if it
keeps together things that are related to each
other, and keeps out other things

— This makes the system as a whole easier to
understand and change

— Type of cohesion:

* Functional, Layer, Communicational, Sequential,
Procedural, Temporal, Utility

University of Toronto 2

CSC301: Introduction to Software Engineering

Functional cohesion

m This is achieved when all the code that
computes a particular result is kept together -
and everything else is kept out

— I.e. when a module only performs a single
computation, and returns a result, without having
side-effects.

— Benefits to the system:
e Easier to understand
* More reusable
» Easier to replace

— Modules that update a database, create a new file or
Interact with the user are not functionally cohesive

University of Toronto 3

CSC301: Introduction to Software Engineering

Layer cohesion

m All the facilities for providing or accessing a set of related services
are kept together, and everything else is kept out

— The layers should form a hierarchy
* Higher layers can access services of lower layers,
* Lower layers do not access higher layers

— The set of procedures through which a layer provides its
services is the application programming interface (API)

— You can replace a layer without having any impact on the other
layers

* You just replicate the API

University of Toronto 4

CSC301: Introduction to Software Engineering

Example of the use of layers

——
Application programs

1 Ul
Screen display —
facilities Dealing with

: application protocols
—1 v T

User account] v
management Dealing with
connections

User
interface

1y .
! File — v

1] v
Application

|
|
|
|
|
|
—l :
|
|
|
|
|
|
|
|

System Dealing with
logic

, : packets
; ! : 1V ¥V ¥ Y ;
] vV 1% 1V Kermnel] \
Operating ||Database|| Network (handling processes Transmitting

system access || access ||communication and swapping) and receiving

(a) Typical layers in an (b) Typical layers in an (c) Simplified view of layers
application program operating system in a communication system

University of Toronto 5

CSC301: Introduction to Software Engineering

Communicational cohesion

= All the modules that access or manipulate
certain data are kept together (e.g. in the same
class) - and everything else is kept out
— A class would have good communicational cohesion

« if all the system’s facilities for storing and
manipulating its data are contained in this class.

* If the class does not do anything other than
manage Its data.

— Main advantage: When you need to make changes
to the data, you find all the code in one place

University of Toronto 6

CSC301: Introduction to Software Engineering

Sequential cohesion

m Procedures, in which one procedure provides
Input to the next, are kept together — and
everything else is kept out

— You should achieve segquential cohesion, only once
you have already achieved the preceding types of

cohesion.

University of Toronto 7

CSC301: Introduction to Software Engineering

Procedural cohesion

m Procedures that are used one after another are
kept together

— Even if one does not necessarily provide input to the
next.

— Weaker than sequential cohesion.

University of Toronto 8

CSC301: Introduction to Software Engineering

emporal Cohesion

m Operations that are performed during the same
phase of the execution of the program are kept
together, and everything else Is kept out

— For example, placing together the code used during
system start-up or initialization.

— Weaker than procedural cohesion.

University of Toronto 9

CSC301: Introduction to Software Engineering

Utility cohesion

= When related utilities which cannot be logically
placed in other cohesive units are kept together

— A utility Is a procedure or class that has wide

applicability to many different subsystems and is
designed to be reusable.

— For example, the java.lang.Math class.

University of Toronto 10

CSC301: Introduction to Software Engineering

Reduce coupling where possible

m Coupling occurs when there are interdependencies
between one module and another

— When interdependencies exist, changes in one place will
require changes somewhere else.

— A network of interdependencies makes it hard to see at a
glance how some component works.

— Type of coupling:
e Content, Common, Control, Stamp, Data, Routine Call,
Type use, Inclusion/Import, External

University of Toronto 11

CSC301: Introduction to Software Engineering

Content coupling:

m Occurs when one component surreptitiously
modifies data that is internal to another
component

— To reduce content coupling you should therefore
encapsulate all instance variables

 declare them private
« and provide get and set methods

— A worse form of content coupling occurs when you
directly modify an instance variable of an instance
variable

University of Toronto 12

CSC301: Introduction to Software Engineering

Example of content coupling

public class Line

{

private Point start, end,

public Point getStart() { return start; }
public Point getEnd() { return end; }

}

public class Arch

{

private Line baseline;

void slant(int newY)

{
Point theEnd = baseline.getEnd();
theEnd.setLocation(theEnd.getX(),newY);

}
}

University of Toronto 13

CSC301: Introduction to Software Engineering

Common coupling

Occurs whenever you use a global variable

All the components using the global variable become
coupled to each other

A weaker form of common coupling is when a
variable can be accessed by a subset of the system’s
classes

e e.g. a Java package

Can be acceptable for creating global variables that
represent system-wide default values

The Singleton pattern provides encapsulated global
access to an object

University of Toronto 14

CSC301: Introduction to Software Engineering

Control coupling

m Occurs when one procedure calls another using
a ‘flag’ or ‘command’ that explicitly controls what
the second procedure does

— To make a change you have to change both the
calling and called method

— The use of polymorphic operations is normally the
best way to avoid control coupling

— One way to reduce the control coupling could be to
have a look-up table

e commands are then mapped to a method that
should be called when that command is issued

University of Toronto 15

CSC301: Introduction to Software Engineering

Example of control coupling

public routineX(String command)

{

If (command.equals("drawCircle")

{

drawCircle();

}

else

{

drawRectangle();

}
}

University of Toronto 16

CSC301: Introduction to Software Engineering

Stamp coupling:

m Occurs whenever one of your application
classes is declared as the type of a method
argument

— Since one class now uses the other, changing the
system becomes harder

* Reusing one class requires reusing the other

— Two ways to reduce stamp coupling,
* using an interface as the argument type
e passing simple variables

University of Toronto 17

CSC301: Introduction to Software Engineering

Example of stamp coupling

public class Emailer

{

public void sendEmail(Employee e, String text)
{..}
}

Using simple data types to avoid it:

public class Emailer

{

public void sendEmail(String name, String email, String text)
{...}
}

University of Toronto 18

CSC301: Introduction to Software Engineering

Example of stamp coupling

Using an interface to avoid it:

public interface Addressee

{
public abstract String getName();

public abstract String getEmail();
}

public class Employee implements Addressee {...}

public class Emailer

{

public void sendEmail(Addressee e, String text)
{...}
}

University of Toronto 19

CSC301: Introduction to Software Engineering

Data coupling

m Occurs whenever the types of method
arguments are either primitive or else simple
library classes

— The more arguments a method has, the higher the
coupling

« All methods that use the method must pass all the
arguments

— You should reduce coupling by not giving methods
unnecessary arguments

— There Is a trade-off between data coupling and stamp
coupling

 Increasing one often decreases the other

University of Toronto 20

CSC301: Introduction to Software Engineering

Routine call coupling

m Occurs when one routine (or method in an
object oriented system) calls another

— The routines are coupled because they depend on
each other’s behaviour

— Routine call coupling is always present in any system.

— If you repetitively use a sequence of two or more
methods to compute something

 then you can reduce routine call coupling by

writing a single routine that encapsulates the
seqguence.

University of Toronto 21

CSC301: Introduction to Software Engineering

ype use coupling

m Occurs when a module uses a data type defined
In another module
— It occurs any time a class declares an instance
variable or a local variable as having another class for
Its type.
— The consequence of type use coupling is that if the

type definition changes, then the users of the type
may have to change

— Always declare the type of a variable to be the most
general possible class or interface that contains the
required operations

University of Toronto 22

CSC301: Introduction to Software Engineering

Inclusion or import coupling

m Occurs when one component imports a package

(as in Java)

= or when one component includes another

(as in C++).

The including or importing component is now exposed
to everything in the included or imported component.

If the Included/imported component changes
something or adds something.

 This may raises a conflict with something in the
Includer, forcing the includer to change.

An item in an imported component might have the
same name as something you have already defined.

University of Toronto 23

CSC301: Introduction to Software Engineering

External coupling

= When a module has a dependency on such
things as the operating system, shared libraries
or the hardware

— It Is best to reduce the number of places in the code
where such dependencies exist.

— The Facade design pattern can reduce external
coupling

University of Toronto 24

Revisiting OOD:
cohesion and coupling and the
Use of Reflection

University of Toronto 25

CSC301: Introduction to Software Engineering

Background
m Turing's great insight: programs are just another kind
of data
— Source code Is text
— Manipulate it line by line, or by parsing expressions

m Compiled programs are data, too

— Integers and strings are bytes in memory that you interpret a
certain way

— Instructions in methods are just bytes too

= No reason why a program can't inspect itself

University of Toronto 26

CSC301: Introduction to Software Engineering

How objects work

class Point {

public Point(int X, int y) {
X=95;Y =10;

}
public int getX() {

return Xx;

}
public int getY() {

return y;

}

protected int X, v,

}

object

class

Point(int,int {}
getX() U
getY() U

University of Toronto 27

CSC301: Introduction to Software Engineering

he class Class

m Instances of the class Class store information about
classes

— Class name
— |Inheritance
— Interfaces implemented
— Methods, members, etc.

m Can look up instances:
— By name
— From an object

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html

University of Toronto 28

CSC301: Introduction to Software Engineering

Showing a type

public static void showType(PrintStream out,

}

String className)
throws ClassNotFoundException

Class thisClass = Class.forName(className);
String flavour = thisClass.isInterface() ? "interface" : "class";
out.printin(flavour + " " + className);
Class parentClass = thisClass.getSuperclass();
iIf (parentClass = null) {

out.printin(" extends " + parentClass.getName());
}
Class|] interfaces = thisClass.getInterfaces();
for (Class interf : interfaces) {

out.printin(" implements " + interf.getName());

}

University of Toronto 29

CSC301: Introduction to Software Engineering

Output for type example

class java.lang.Object

class java.util.HashMap
extends java.util. AbstractMap

Im
Im
Im

D
D

D

SINEIS
SINERIS
ements

class Point
extends java.lang.Object

java.util.Map

-ava.lang.CIoneabIe
java.lo.Serializable

University of Toronto 30

CSC301: Introduction to Software Engineering

Examining class contents

public static void showContents(PrintStream out,
boolean hideObject,
String name)
throws ClassNotFoundException {
Class cls = Class.forName(name);
out.printin(name);
showMembers(out, hideObject, name + " fields", cls.getFields());

showMembers(out, hideObject, name + " constructors",cls.getConstructors());

showMembers(out, hideObject, name + " methods", cls.getMethods());

}

University of Toronto 31

CSC301: Introduction to Software Engineering

Examining class contents

public static void showMembers(PrintStream out,
boolean hideObject,
String title,
Member[] members) {
out.printin(* " + title);
for (Member mem : members) {
If (mem.getDeclaringClass() == Object.class) {
If (hideObject) {
continue;
}
}
out.printin("\t" + mem);
}
}

University of Toronto 32

CSC301: Introduction to Software Engineering

Point (somewhat edited)

Point fields

Point constructors
public Point(java.lang.String,int,int)
public Point(int,int)

Point methods
public java.lang.String Point.toString()
public java.lang.String Point.getName()
public void Point.setName(java.lang.String)
public int Point.getX()
public void Point.setX(int)
public int Point.getY()
public void Point.setY (int)

University of Toronto 33

CSC301: Introduction to Software Engineering

Getting at members
s How to access members of a specific object?

— Without making raw pointers into memory part of the

language
« (Raw pointers are a rich source of errors in C/C++)

m Introduce a class Field

Encapsulates access to a particular field of instances of a
class

Knows "where the field is" in objects of that class

Use its get() and set() methods to inspect and modify the
object

University of Toronto 34

CSC301: Introduction to Software Engineering

Examining fields

public static void main(String[] args) {
PublicPoint p = new PublicPoint("center", 3, 3);

showField(System.out, p, "fName");
showField(System.out, p, "fX");
showField(System.out, p, "fY");
showField(System.out, p, "fZ");

University of Toronto 35

CSC301: Introduction to Software Engineering

public static void showField(PrintStream out,
Object obj, String fieldName) {

try {
Class cls = obj.getClass();
Field field = cls.getField(fieldName);
Object value = field.get(obj);
out.printin(fieldName + ": " + value);

catch (NoSuchFieldException e) {
System.err.printin(e);

catch (lllegalAccessException e) {
System.err.printin(e);

}
}

University of Toronto 36

CSC301: Introduction to Software Engineering

Output

m fName: center

m fX: 3

m fY: 3

= java.lang.NoSuchFieldException: fZ

University of Toronto 37

CSC301: Introduction to Software Engineering

\ public static void showMethods(
PrintStream out, Object obj)

throws NoSuchMethodException,
lllegalAccessException,

InvocationTargetException {

Class cls = obj.getClass();

out.printin(cls.getName());

for (Method meth : cls.getMethods()) {
If (meth.getDeclaringClass() == cls) {

showMethod(out, meth);

}
}
}

University of Toronto 38

CSC301: Introduction to Software Engineering

Calling methods

1. Look up a method based on its signature: the name and list
of parameter types

2. Specify signature as a comma-separated list of Class objects
— Specifies the types of arguments

— Special values for types like int and boolean

3. Call the method, passing in parameters and capturing return
value

University of Toronto 39

CSC301: Introduction to Software Engineering

Class mysClass = Class.forName("Mystery");
Object o0 = mysClass.newlnstance();

Method m = mysClass.getMethod("euclidean”,
Double. TYPE, Double. TYPE);

double result = (Double) m.invoke(o,

new Double(5.0), 12.0),

Method m2 = mysClass.getMethod("play",
Class.forName("java.lang.String"), String.class);

m2.invoke(o, "Che", "Karl");

University of Toronto 40

Revisiting OOD:
cohesion and coupling and the
Use of Components

University of Toronto 41

CSC301: Introduction to Software Engineering

Component-based Software

App A

University of Toronto 42

CSC301: Introduction to Software Engineering

ﬂ“ ComponentSourc

&

J File Edit ‘“iew Favorites Tools Help

The Definitive Source of Software Components - Windows Internet Explorer

/v I Rt v componentsource. com,index.html

4 'f.}fs ComponentSource® - The Definitve Saur... ‘ ‘

| &~ | Help Logon Register

= Siguln

(nmponenl Buy Online or Call : (888) &
[Pt obmmer Lowvis of Sobwws Comamaratn |

[Wiew in English
Product Search

Enter searchwords:

Search |

Secure and Safe.

Why risk your details with
other stores? Our security
measures have never been
compromised.

b

Popular Catalogs

Browse over 90 catalogs

Products By Type
Components (1316)
'+ NET (753)

oM (438)

I MFC (58)
DLL (242)
VCL (98)
Tools (507)
" dows (482)
' Linux (52)
'+ Unix (37)
Products By Platform
Microsoft (1376)
008 (551)
005 (825)

Business oriented component suite for the

WPF platform.

v Grid control with industry leading performance, virtual

mode and more

» Docking, Ribbon, MDI Framework, Editors, TabControl,

TreeView and more

New Releases: SlickEdit for HPUX 2008 (V13.0.1)- Write more code faster and more
accurately in over 40 programming languages on 7 different platforms.

A complete setof Ul controls
for Windows Forms,

Develop high-quality,
standards-conformant XML-

fizve All Newe =
SourceGear Vault VA LZ

e —)

A compelling replacement for
Visual SourceSafe.

based applications.

Categories | View Publishers
30 Maodeling (5) Drawing (11)
ounts Interface (10) eCommerce {17)
Addressing, Postcode and Editing (1)
ZinCode {10) Email (71)
Analysis, Design and Email Address

Product Suites (103)
Produ (55)
Reporting (62)
Resizing (17)

Scanning and QCR. (32)

Modeling (7) Werification (11)
Artificial Inteligence (4) Encryption (14)
Audio, MIDI and Sound (2)Explorer (16)
AutomaticUpdates (3) Facsimile /Fax (3)
Barcodes (109) File Handling (31)

Build f Make / Compile (3) File Transfer Upload (56,

P
wla)

ration (29)
Serial Communication (8)

) Software Licensing (14)

Business Rules (16)
Button and Cursor
Design (28)

o

Source Code Generators (4)
Speech and SAPI (7)
Spelling (30)

University of Toronto 43

Schedule

Join Free Today!

& 944934 members and
growing
Access toFree
Products
Evaluate, Buy &
Download 24/7
Weekly Email Newsletter
GreatPrices & Special
Offers

‘four email address.

Join Now |

Best Sellers
NetAdvantage for NET
ActiveReports for NET
DXperience
Dundas Chart for
ASP MET Enterprise
Edition
Telerik RadControls for

SPLMET
WinForms + Telerik
Reporting
Janus WinForms
Controls Suite
ComponentOne Studio
Enterprise
InstallShield 2009

+ WPF
DiXperience WinForms

CSC301: Introduction to Software Engineering

Component standards

m Sun: JavaBeans
m Microsoft: ActiveX, COM, DCOM

University of Toronto 44

CSC301: Introduction to Software Engineering

Java Beans

m Reusable components for visual programming
— Standard constructor
 No arguments
— Standard ways of editing parameters
e Set methods
* Property editors
« Customizers
— Standardized event handling
* Including property change notification and control

University of Toronto 45

Revisiting OOD:
cohesion and coupling and the
Use of XML

University of Toronto 46

CSC301: Introduction to Software Engineering

How can we exchange data between
heterogeneous systems?

IE(M symbian

emcsson
]

NOKIA

G o erusson
Panasonic.

Connecting People

Novel Jrosnss epson| [Z) WEEEE

University of Toronto 47

http://images.google.ca/imgres?imgurl=http://www.ubergizmo.com/photos/2006/3/palm_logo.jpg&imgrefurl=http://www.ubergizmo.com/15/archives/2006/03/palm_treo_700p_sprint_rumours.html&h=250&w=250&sz=14&hl=en&start=40&tbnid=V6ED7qC-8-oEGM:&tbnh=111&tbnw=111&prev=/images?q=palm+operating+system+logo&start=36&gbv=2&ndsp=18&svnum=10&hl=en&safe=off&sa=N�
http://images.google.ca/imgres?imgurl=http://gizmodo.com/images/2006/04/HP logo.jpg&imgrefurl=http://gizmodo.com/gadgets/battery?refId=181159&h=196&w=268&sz=8&hl=en&start=8&tbnid=tKJGtquLa4MxHM:&tbnh=83&tbnw=113&prev=/images?q=HP+logo&gbv=2&svnum=10&hl=en&safe=off�
http://images.google.ca/imgres?imgurl=http://www.stevens-tech.edu/undergrad/img/IBM_log_blue.gif&imgrefurl=http://www.stevens.edu/undergrad/it&h=188&w=438&sz=2&hl=en&start=1&tbnid=iq0j1Ya7dc9ZDM:&tbnh=55&tbnw=127&prev=/images?q=IBM+log&gbv=2&svnum=10&hl=en&safe=off�
http://images.google.ca/imgres?imgurl=http://www.gamestar.hu/apix/0604/nokia_logo.jpg&imgrefurl=http://www.patentmonkey.com/PM/IMTBlog/tabid/63/Default.aspx?BlogDate=2007-05-31&h=150&w=250&sz=4&hl=en&start=4&tbnid=5k1TWuDm4pm0aM:&tbnh=67&tbnw=111&prev=/images?q=Nokia+logo&gbv=2&svnum=10&hl=en&safe=off�

CSC301: Introduction to Software Engineering

Rosetta Stone)

Message N the _BOttIe (or: towards the Digital

Degree of "

not quite

A@Some Quotations from the Universal Library*M1
Famous Quotes”M1.1 By William I"M[2,
Sonnet XVIII"MShall | compare thee to a
summer's day?*MThou art more lovely and
more temperate. MRough winds do shake the
darling buds of May,"MAnd summer's lease
hath all too short a date."MSometime too hot
the eye of heaven shines,"MAnNd often is his
gold complexion dimmed.”MAnNd every fair
from fair some declines,"MBY chance or
nature's changing course untrimmed.”MBut thy
eternal summer shall not fade,"MNor lose
possession of that fair thou owest,"MNor shall
Death brag thou wander'st in his
shade”MWhile in eternal lines to time thou
growest.*MSo long as men can breathe, or
eyes can see,”MSo long live this, and this
gives life to thee.”M1.2 By William [I"M[1,
p.265]*M\223The obvious mathematical
breakthrough would be development of*"Man
easy way to factor large prime
numbers."*MReferencesM[1] W. H. Gates.
The Road Ahead. Viking Penguin, 1995."M[2]
W. Shakespeare. The Sonnets of
Shakespeare.609."M" @@ @ @@ @ @"
@@ @@ @ e "e"@"@"e@"e@"e"@"@

A 4

University of Toronto 48

CSC301: Introduction to Software Engineering

Two Important Ideas: (1) Markup?

= Information added to a text to make its
structure comprehensible

m Pre-computer markup (punctuational and
presentational)

University of Toronto 49

CSC301: Introduction to Software Engineering

Two Important Ideas: (2) declarative

m Names and structure

m Finer level of detall (most human-legible
signals are overloaded)

m Independent of presentation (abstract)
m People often call this “

University of Toronto 50

CSC301: Introduction to Software Engineering

message in the _BOttlaor: towards the Digital

Degree of "

Rqsetta Stone)

not quite

not bad

r@Some Quotations from the Universal Library“M1
Famous Quotes”M1.1 By William I"M[2,
Sonnet XVIII"MShall | compare thee to a
summer's day?*MThou art more lovely and
more temperate. MRough winds do shake the
darling buds of May,"MAnd summer's lease
hath all too short a date."MSometime too hot
the eye of heaven shines,"MAnNd often is his
gold complexion dimmed.”MAnNd every fair
from fair some declines,"MBY chance or
nature's changing course untrimmed.”MBut thy
eternal summer shall not fade,"MNor lose
possession of that fair thou owest,"MNor shall
Death brag thou wander'st in his
shade”MWhile in eternal lines to time thou
growest.*MSo long as men can breathe, or
eyes can see,”MSo long live this, and this
gives life to thee.”M1.2 By William [I"M[1,
p.265]*M\223The obvious mathematical
breakthrough would be development of*"Man
easy way to factor large prime
numbers."*MReferencesM[1] W. H. Gates.
The Road Ahead. Viking Penguin, 1995."M[2]
W. Shakespeare. The Sonnets of
Shakespeare.609."M" @@ @ @@ @ @"
@@ @@ @ e "e"@"@"e@"e@"e"@"@

\documentclass{article}
\begin{document}

\title{Some Quotations from the
Universal Library}

\section{Famous Quotes}
\subsection{By William 1}

\textbf{\cite[Sonnet
XVII1]{shakespeare-sonnets-
1609}}

\begin{verse}
Shall | compare thee to a summer's
[SE\ZANN

Thou art more lovely and more
temperate. \\

Rough winds do shake the darling buds
of May, \\

And summer’s lease hath all too short a
date. \\

Sometime too hot the eye of heaven
shines, \\

And often is his gold complexion
dimmed. \\

\gquad So long as men can breathe, or
eyes can see,\\

\gquad So long live this, and this gives
life to thee. \\

\end{verse}

\bibliographystyle{abbrv}
\bibliography{msg}

\end{document}

University of Toronto 51

A 4

CSC301: Introduction to Software Engineering

XML: Basic format

1) Element: <tag>content</tag>

— basic unit
— tag name defines what the content is
— opening and closing tags enclose content

2) Attribute: Information about the data

— Attribute names are usually adjectives

— Stored as attribute=""value" pairs:
e <tag attribute=""value'>
= content
- </tag>

University of Toronto 52

CSC301: Introduction to Software Engineering

\ Rules for well-formed XML

. Elements that contain data must have <start> and </end>
tags!

- Empty tags must be closed <some-tag/>

- Elements should not overlap

Bad Nesting:
<trunk> <branch> </trunk> </branch>

m All attribute values must be wrapped in guotes

XML is case sensitive: <TAG> and <Tag> are treated differently.
(Standard: use lower case.)

University of Toronto 53

CSC301: Introduction to Software Engineering

More XML Rules

- A document begins with:

e an
<?xml version="1.0" encoding=""UTF-8"7>

o Immediately follows; encloses

entire content of the document.
<book>

everything else
</book>

University of Toronto 54

CSC301: Introduction to Software Engineering

Elements and their Content

eneni e I

<bibliography>

</bibliography>

University of Toronto 55

CSC301: Introduction to Software Engineering

- XML Example: content objects in

a book
Book

— FrontMatter
—BookTitle
—Author(s)
—Publinfo
—Chapter(s)

- ChapterTitle
— Paragraph(s)
—BackMatter

—References
—Index

University of Toronto 56

CSC301: Introduction to Software Engineering

A simple XML fragment

<Book>
<FrontMatter>
<BookTitle>XML Is Easy</BookTitle>
<Author>Tim Cole</Author>
<Author>Tom Habing</Author>
<PubInfo>CDP Press, 2002</Publnfo>
</FrontMatter>
<Chapter>
<ChapterTitle>First Was SGML</ChapterTitle>
<Paragraph>0Once upon a time ..</Paragraph>
</Chapter>
</Book>

University of Toronto 57

CSC301: Introduction to Software Engineering

his iIs NOT XML, why?

<PoemFragment>
<Stanza>
<Line> It was six men of Indostan</Line>
<Line>To learning much inclined,</Line>
<Line>Who went to see the Elephant</Line>
<Line>(Though all of them were blind),</Line>
<Line>That each by observation</Line>
<Line>Might satisfy his mind </Line>
</Stanza>
</PoemFragment>

University of Toronto 58

CSC301: Introduction to Software Engineering

Rosetta ngne)

Message N the _BOttIe (or: towards the Digital

Degree of " :

not quite ~

not bad

r@Some Quotations from the Universal Library“M1
Famous Quotes”M1.1 By William I"M[2,
Sonnet XVIII"MShall | compare thee to a
summer's day?*MThou art more lovely and
more temperate. MRough winds do shake the
darling buds of May,"MAnd summer's lease
hath all too short a date."MSometime too hot
the eye of heaven shines,"MAnNd often is his
gold complexion dimmed.”MAnNd every fair
from fair some declines,"MBY chance or
nature's changing course untrimmed.”MBut thy
eternal summer shall not fade,"MNor lose
possession of that fair thou owest,"MNor shall
Death brag thou wander'st in his
shade”MWhile in eternal lines to time thou
growest.*MSo long as men can breathe, or
eyes can see,”MSo long live this, and this
gives life to thee.”M1.2 By William [I"M[1,
p.265]*M\223The obvious mathematical
breakthrough would be development of*"Man
easy way to factor large prime
numbers."*MReferencesM[1] W. H. Gates.
The Road Ahead. Viking Penguin, 1995."M[2]
W. Shakespeare. The Sonnets of
Shakespeare.609."M" @@ @ @@ @ @"
@@ @@ @ e "e"@"@"e@"e@"e"@"@

\documentclass{article}
\begin{document}

\title{Some Quotations from the
Universal Library}

\section{Famous Quotes}
\subsection{By William 1}

\textbf{\cite[Sonnet
XVII1]{shakespeare-sonnets-
1609}}

\begin{verse}
Shall | compare thee to a summer's
[SE\ZANN

Thou art more lovely and more
temperate. \\

Rough winds do shake the darling buds
of May, \\

And summer’s lease hath all too short a
date. \\

Sometime too hot the eye of heaven
shines, \\

And often is his gold complexion
dimmed. \\

\gquad So long as men can breathe, or
eyes can see,\\

\gquad So long live this, and this gives
life to thee. \\

\end{verse}

\bibliographystyle{abbrv}
\bibliography{msg}

A 4

pretty good
<?xm|version=q. "> v
<universal_library>

<books>

<book> <title=Some Quotations from the Universal
Library</title>
<section> <title>=Famous Quotes</title>
<subsection> <title>By William I</title>
<quote bibref="shakespeare-sonnets-1609">
<title=Sonnet XVIlI</title>
<verse>
<line>Shall | compare thee to a summer's
day?</line>
<line>Thou art more lovely and more
temperate. </line>

<line=>=Rough winds do shake the darling buds of
May, </line>

</verse>

<subsection> <title>By William l1</title>
<quote bibref="gates-road-ahead-1995">
<title>Page 265</title>
<line>""The obvious mathematical breakthrough

would be development of an easy way to factor
large prime numbers.”</line>

</quote>
</subsection>
</section>
</book>

</books>
</universal_library>

\end{document}

University of Toronto 59

CSC301: Introduction to Software Engineering

XML Industry Initiatives

Every community is building it’s own XML protocols, for example:

Advertising: adXML place an ad onto an ad network or to a single vendor
Literature: Gutenberg convert the world’s great literature into XML

Web Servers: apacheXML parsers, XSL, web publishing

Travel: openTravel information for airlines, hotels, and car rental places

News: NewsML creation, transfer and delivery of news
Voice: VoxML markup language for voice applications

Wireless: WAP (Wireless Application Protocol) wireless devices
Weather: OMF Weather Observation Markup Format (simulation)
Geospatial: ANZMETA distributed national directory for land information

ank] MBA Mortgage Bankers Association of America --> credit report,
oan #ng U'n'd'e'rwr?fngg < P

Healthcare: HL7 DTDs for prescriptions, policies & procedures, clinical trials
Math: MathML (Mathematical Markup Language)

Surve éData Documentation Initiative) “codebooks” in the social and
beha ora sciences

Http://www.oasis-open.org/cover/xml.html#applications

University of Toronto 60

http://www.microsoft.com/billgates/�
http://http.cs.berkeley.edu/~christos/�
http://www.novell.com/products/nds/dirxml/dirxmlpres/slide011.html�
http://www.dsml.org/�
http://xml.apache.org/�
http://www.xml-hr.org/�
http://www.bellanet.org/xml/�
http://www.wapforum.org/�
http://www.insidedhtml.com/xml/weather/page1.asp�
http://www.environment.gov.au/net/anzmeta/anzmeta-1.2.htm�
http://www.mbaxml.org/�

CSC301: Introduction to Software Engineering

Two Applications Communicating

A

XML Builder @
Request in XML

@: XML Builder

Response in XML

University of Toronto 61

Revisiting OOD:
cohesion and coupling and the
Use of Message Queues

University of Toronto 62

CSC301: Introduction to Software Engineering

“ Two Client Applications
communicating with a server

University of Toronto 63

	CSC301: Introduction to �Software Engineering��Lecture 10
	Revisiting OOD: �cohesion and coupling
	Increase cohesion where possible
	Functional cohesion
	Layer cohesion
	Example of the use of layers
	Communicational cohesion
	Sequential cohesion
	Procedural cohesion
	Temporal Cohesion
	Utility cohesion
	Reduce coupling where possible
	Content coupling:
	Example of content coupling
	Common coupling
	Control coupling
	Example of control coupling
	Stamp coupling:
	Example of stamp coupling
	Example of stamp coupling
	Data coupling
	Routine call coupling
	Type use coupling
	Inclusion or import coupling
	External coupling
	Revisiting OOD: �cohesion and coupling and the �Use of Reflection�
	Background
	How objects work
	The class Class
	Showing a type
	Output for type example
	Examining class contents
	Examining class contents
	Slide Number 34
	Getting at members
	Examining fields
	Slide Number 37
	Output
	Slide Number 39
	Calling methods
	Slide Number 41
	Revisiting OOD: �cohesion and coupling and the �Use of Components
	Component-based Software
	Slide Number 44
	Component standards
	Java Beans
	Revisiting OOD: �cohesion and coupling and the �Use of XML
	How can we exchange data between heterogeneous systems?
	Message in the Bottle (or: towards the Digital Rosetta Stone)
	Two Important Ideas: (1) Markup?
	Two Important Ideas: (2) declarative
	Message in the Bottle (or: towards the Digital Rosetta Stone)
	XML: Basic format
	Rules for well-formed XML
	More XML Rules
	Elements and their Content
	XML Example: content objects in a book
	A simple XML fragment
	This is NOT XML, why?
	Message in the Bottle (or: towards the Digital Rosetta Stone)
	XML Industry Initiatives
	Two Applications Communicating
	Revisiting OOD: �cohesion and coupling and the �Use of Message Queues
	Two Client Applications communicating with a server

