CSC301: Introduction to Software
Engineering

Lecture 2

Wael Aboulsaadat

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Design: design patterns

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Analysis & Design
m OOA:

— Input: written requirements statement, a formal vision document,
interviews with stakeholders or other interested parties

— Target: produce a conceptual model of the information that exists
In the area being analyzed

— Output: set of use cases, one or more UML class diagrams, and a
number of interaction diagrams. It may also include some kind of
user interface mock-up

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Analysis & Design

Interviews > OOA > Use cases

Observation > Class diagrams

Manuals/ Sequence diagrams
Forms

= |dentify classes

= |dentify relations between classes

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Analysis & Design
m OOD:

— Input: conceptual model produced in OOA

— Target: a model of the solution domain, how the system is to be built,
given the constraints identified in the OOA

— Qutput: specification of implementation classes and interfaces

OOA OOD

University of Toronto

CSC301: Introduction to Software Engineering

echniques for Finding Objects

m OOA

Start with Use Cases. Identify participating objects
Textual analysis of flow of events (find nouns, verbs, ...)

Extract application domain objects by interviewing client (application
domain knowledge)

Find objects by using general knowledge

m System Design
— Subsystem decomposition
— Try to identify layers and partitions

m Object Design

Find additional objects by applying implementation domain knowledge

University of Toronto

CSC301: Introduction to Software Engineering

Another Source for Finding Objects
Design Patterns

s What are Design Patterns?

— A design pattern describes a problem which occurs over and
over again in our environment

— Then it describes the core of the solution to that problem, in such
a way that you can use the this solution a million times over,
without ever doing it the same twice

Patterns in Architecture

+ Does this room makes
you feel happy?

+ Why?
= Light (direction)

- Proporions
= Symmetry
— Furniture
— And more...

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

m Creational Patterns

Focus: Creation of complex objects

Here we our goal is to provide a simple abstraction for a complex
instantiation process.

We want to make the system independent from the way its objects
are created, composed and represented.

Problems solved:
* Hide how complex objects are created and put together

Creational

Factory Method
Abstract Factory
Builder
Prototype
Singleton

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

m Structural Patterns

— Focus: How objects are composed to form larger structures
— They reduce the coupling between two or more classes
— They introduce an abstract class to enable future extensions

— They encapsulate complex structures E——
— Problems solved: Adapter
* Realize new functionality from old functionality, Bridge
] . . C it
 Provide flexibility and extensibility omposite
Decorator
Flyweight
Facade
Proxy

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

m Behavioral Patterns

Focus: Algorithms and the assignment of responsibilities to objects

Here we are concerned with algorithms and the assignment of
responsibilies between objects: Who does what?

Behavioral patterns allow us to characterize complex control flows
that are difficult to follow at runtime.

Behavioural

Problem solved: Interpreter

« Too tight coupling to a particular algorithm Template Method
Chain of Responsibility
Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

University of Toronto

CSC301: Introduction to Software Engineering

Elements of a Design Pattern
m Pattern Name

— Increases design vocabulary, higher level of abstraction

m Problem
— When to apply the pattern
— Problem and context, conditions for applicability of pattern

= Solution
— Relationships, responsibilities, and collaborations of design elements
— Not any concrete design or implementation, rather a template

m Consequences
— Results and trade-offs of applying the pattern
— Space and time trade-offs, reusability, extensibility, portability

University of Toronto

Pattern: Command

objects that represent actions...

University of Toronto

CSC301: Introduction to Software Engineering

Command pattern

s Command: an object that represents an action

— sometimes called a "functor" to represent an object
whose sole goal is to encapsulate one function

University of Toronto

CSC301: Introduction to Software Engineering

Command pattern

Invoker

Client

‘ Receiver

) binds

Command

execute()

A

action()

ConcreteCommand

execute()

m Client creates a ConcreteCommand and binds it with a

Recelver.

m Client hands the ConcreteCommand over to the Invoker

which stores It.

m The Invoker has the responsibility to do the command

(“execute” or “undo”).

University of Toronto

CSC301: Introduction to Software Engineering

Command Pattern: motivation

m You want to build a user interface
= You want to provide menus

m You want to make the user interface reusable
across many applications

— You cannot hardcode the meanings of the menus for
the various applications

— The applications only know what has to be done
when a menu Is selected.

m Such a menu can easily be implemented with
the Command Pattern

University of Toronto

CSC301: Introduction to Software Engineering

Common Ul commands

m itis common in a GUI to have several ways to activate the

same behavior
— example: toolbar "Cut" button and "Edit / Cut" menu
— this is good ; it makes the program flexible for the user

— we'd like to make sure the code implementing these common
commands is not duplicated

Closa(i
Cutl)
Copy()

- ~—

(Paste
code P / Paste()

University of Toronto

CSC301: Introduction to Software Engineering

Command Pattern: second motivation

= A new way to think about designing the software

University of Toronto

CSC301: Introduction to Software Engineering

Command pattern - example

i 9 arsrinces
| € javax:serelet-hiip:Hitp Sendetfosponse € javax—servliet:hitp=HpS endetReques

B eiuzduk

#H wdu .drh.:.c

e

0 Command |+ * —| @ CommandFaciony

@ DeleteProjec | @ DeleteFeguiredFile @ OpenEmail @ Duestionfnswered
[& DeloteFundSonrce | @ DeleteTask l [@ OpenFeedback | & RejeciTask

3 Deiateliser |
& Default (| @ Remembedassaond I

| @ Editftesources
@ OpenResources | | & Removebote I | @ SendFesdback

—
| @ Regu File @ SendOuestion

| @ InseriFundSource =
[| E I Wiew T i el
@ Participants | B SaveNate iewi o men

— — sIParticipants | @ SendReply
@ CloseProject @ Prawiewbats I | & Smeafraject

2 LoadProject | 3 ShowMotes
| @ ClosedProjecil ist @ ProjeciCreate | & SaveRsjectadTask ey
: @ TaskEdit

3 Loagin
@ ProjeciEdi | @ SaveRequiredFile e
@ Usera 5
- @ ChangeOldPasword .m— @ Projecilist | 3 SaveRasources I | & UserEdit

University of Toronto

CSC301: Introduction to Software Engineering

Command pattern Applicability

m “Encapsulate a request as an object, thereby
letting you

— parameterize clients with different requests,
— gueue or log requests, and
— support undoable operations.”

m Uses:
— Undo queues
— Database transaction buffering

University of Toronto

Pattern: Singleton

At max One Instance of a class!

University of Toronto

CSC301: Introduction to Software Engineering

Singleton Pattern

» Used to ensure that a class has only one instance. For
example, one printer spooler object, one file system, one

window manager, etc.

* |nstead the class itself is made responsible for keeping
track of its instance. It can thus ensure that no more than

one instance is created. This is the singleton pattern

University of Toronto

CSC301: Introduction to Software Engineering

Singleton example code
public class MySingletonClass {

private static MySingletonClass i1nstance
= new MySingletonClass();

public static MySingletonClass getlnstance()
{

return instance;

}

/** There can be only one. */
private MySingletonClass() {}

University of Toronto

Pattern: Observer

University of Toronto

CSC301: Introduction to Software Engineering

Observer pattern

m “Define a one-to-many dependency between
objects so that when one object changes state,
all its dependents are notified and updated
automatically.”

m Also called “Publish and Subscribe”

m Uses:

— Maintaining consistency across redundant state
— Optimizing batch changes to maintain consistency

University of Toronto

CSC301: Introduction to Software Engineering

Observeropattern (continued)

bservers Subject

ODesignPatterns2.ppt Info

N

ODesignPatterns2.ppt

rarelifecycle pdf
reLifecycle
urnent Fr; thr

[0}

nqn‘ Fr' Jan
. Fri, Ja

=] M

ternCesignl ppt
ignRationale pdf
Fr'1_. Jan

ShesignPatterns2.ppt ; FPowerPoint docurnent Thu, Ja

DeszignFPatterns ppt 04k PowerPoint docurnent Mon,

Introduction.pdf 299K Acrobat™ Exchange ...

University of Toronto

CSC301: Introduction to Software Engineering

Observer pattern (cont’'d)

Subject observers
attach(observer) > Observer
detach(observer) update()
notify() A
A l
| subject
: < ConcreteObserver
ConcreteSubject update()
getState()
setState(newState) observerState
subjectState

m The Subject represents the actual state, the Observers
represent different views of the state.

m Observer can be implemented as a Java interface.

m Subject is a super class (needs to store the observers
vector) not an interface.

University of Toronto

CSC301: Introduction to Software Engineering

aFile aninfoView alListView

state is decoupled from
the notificatio

getState()
 — 00

_________________l

v

University of Toronto

CSC301: Introduction to Software Engineering

aFile aninfoView alListView
|
D‘ Attach() J_‘ Attach()
' T
| setState(*foo”) o

notify()

.

update() ~ update()

getState()
............ 0 {01 ST

v

University of Toronto

CSC301: Introduction to Software Engineering

Observer pattern implementation in Java

/[import java.util;

public class Observable extends Object {
public void addObserver(Observer 0);
public void deleteObserver(Observer 0);
public boolean hasChanged();
public void notifyObservers();
public void notifyObservers(Object arg);

}

public abstract interface Observer {
public abstract void update(Observable o, Object arg);
}
public class Subject extends Observable{
public void setState(String filename);
public string getState();

}

University of Toronto

CSC301: Introduction to Software Engineering

Observer Pattern

Relative Percentages

A B CD
1535 3515
10 40 3020
10 40 3020

.

) Data Source (file,
— Change notification " website... etc)

University of Toronto

CSC301: Introduction to Software Engineering

Observer Pattern

observers
Subject ¢ Observer
attach (Observer) Update()
d h (Ob .
ctach (Observer) For all x in observers[X]
INftihy () © x > Update();} /\
Zk Concrete Observer
subject
Concrete Subject) Update()
GetState() observerState
SR observerState§
subjectState subject > getState();

University of Toronto

CSC301: Introduction to Software Engineering

Observer Pattern

= Need to separate presentational aspects with the data,
l.e. separate views and data.

= C(lasses defining application data and presentation can be
reused.

= Change in one view automatically reflected in other views.
Also, change in the application data is reflected in all

views.

" Defines one-to-many dependency amongst objects so that
when one object changes its state, all its dependents are

notified.

University of Toronto

CSC301: Introduction to Software Engineering

Observer Pattern

s GUI programming example

University of Toronto

Pattern: Template Method

University of Toronto

CSC301: Introduction to Software Engineering

Pizza Machine Program: what’s Wrong With This?

public class PizzaMaker {
public void cookPizzas(List pizzas) {
for (int 1=0; i1<pizzas.size(); ++1) {

Object pizza = pizzas.get(n);

IT (p1zza iInstanceof ThinCrustPizza) {
((ThinCrustPi1zza)pizza) .cooklnWoodFireOven();

+

else 1T (pizza instanceof PanPizza) {
((PanPizza)pizza) .cooklnGreasyPan();

}

else {

}
}

}

University of Toronto

CSC301: Introduction to Software Engineering

he Open-Closed Principle

m Classes should be open for extension, but
closed for modification

— .e., you should be able to extend a system without
modifying the existing code

m The type-switch in the example violates this

— Have to edit the code every time the marketing
department comes up with a new kind of pizza

University of Toronto

CSC301: Introduction to Software Engineering

Abstraction iIs the Solution

m Solve the problem by creating a Pi1zza interface
with a cook method

— Or an abstract base class whose cook method must
be overridden by every child

m Simple, right?

University of Toronto

CSC301: Introduction to Software Engineering

How Open Should You Be?

public abstract class Pizza {

public final void cook() {
placeOnCookingSurface();
placelnCookingDevice();
Int cookTime = getCookTime();
letltCook(cookTime);
removeFromCookingDevice();

by

protected abstract void placeOnCookingSurface();

protected abstract void placelnCookingDevice();

protected abstract int getCookTime();

protected abstract void letltCook(int min);

protected abstract void removeFromCookingDevice();

University of Toronto

CSC301: Introduction to Software Engineering

emplate Method Design Pattern

m The Template Method design pattern is used to
set up the skeleton of an algorithm

— Detalls then filled in by concrete subclasses

= But what if someone wants to do something you
didn’t anticipate?
— E.g., wants to add a PancakeP1zza that has to be
flipped over halfway through the cooking process

University of Toronto

CSC301: Introduction to Software Engineering

Override the Template Method?

public final void cook() {
placeOnCookingSurface() ;
placelnCookingDevice();
Int cookTime = getCookTime();
letltCook(cookTime/2);
flipQ);
letltCook(cookTime/2);
removeFromCookingDevice();

}
— But cook was final

— And 1t’s storing up trouble for the future

University of Toronto

CSC301: Introduction to Software Engineering

Sgueeze It Somewhere Else?

protected void removeFromCookingDevice() {

flipQ;
letltCook(cookTime);

..remove from skillet..

}

— removekFromCookingDevice shouldn’t be
doing other things

—Think about the documentation

— And once again, we’re storing up trouble for the
future

University of Toronto

CSC301: Introduction to Software Engineering

Leave Space for Future Growth?

public final void cook() {
beforePlacingOnCookingSurface();
placeOnCookingSurface();
beforePlacingInCookingDevice();
placelnCookingDevice();
beforeCooking();
for (int i=0; i<getCookingPhases(); i++) {
letltCook(getCookTime(n));
aftterCookingPhase(1);
ks
beforeRemovingFromCookingDevice();
removeFromCookingDevice();
aftterRemovingFromCookingDevice();

University of Toronto

CSC301: Introduction to Software Engineering

emplate Method Design Pattern

Frotocol Fun
-] ®RunProtocol()
Posteph) -
Mctp pBIl)

Fratacol)
BERRRE t epAL)

t ehBi)
Protoc |||] Frotocaol?

) 'Tj;;"":z:te;:n.ﬂ.lj']
Tads stepbl() T stepBi()

University of Toronto

Pattern: composite

University of Toronto

CSC301: Introduction to Software Engineering

What Is common between these definitions?

m Definition - Software System

— A software system consists of subsystems which are either
other subsystems or collection of classes

m Definition - Software Lifecycle:

— The software lifecycle consists of a set of development
activities which are either other activities or collection of tasks

University of Toronto

CSC301: Introduction to Software Engineering

Introducing the Composite Pattern
m Models tree structures that represent part-whole
hierarchies with arbitrary depth and width.

s The Composite Pattern lets client treat individual objects
and compositions of these objects uniformly

0

Client Component

A

Composite .
Leaf < /
) Children
. Operation()
Operation() AddComponent
RemoveComponent()
GetChild()

University of Toronto

CSC301: Introduction to Software Engineering

What Is common between these definitions?

m Software System:

— Definition: A software system consists of subsystems which are
either other subsystems or collection of classes

— Composite: Subsystem (A software system consists of
subsystems which consists of subsystems , which consists of
subsystems, which...)

— Leaf node: Class

m Software Lifecycle:

— Definition: The software lifecycle consists of a set of
development activities which are either other actitivies or
collection of tasks

— Composite: Activity (The software lifecycle consists of activities
which consist of activities, which consist of activities, which....)

— Leaf node: Task

University of Toronto

CSC301: Introduction to Software Engineering

Modeling a Software System with a
Composite Pattern

Software |*
System

A

User

Class
Children

Subsystem

University of Toronto

CSC301: Introduction to Software Engineering

Modeling the Software Lifecyc
Composite Pattern

e with a

Software |*
Lifecycle

A

Manager

Task

Activity

Children

University of Toronto

CSC301: Introduction to Software Engineering

Composite Patterns models dynamic aggregates

Fixed Structure: Car

Doors Wheels Battery Engine

Organization Chart (variable aggregate):

*
University £ School [*| Department
regate):
Program
T
o .
Block
|
— <> Compound Simple
Statement Statement

University of Toronto

CSC301: Introduction to Software Engineering

Graphic Applications also use Composite

Patterns
* The Graphic Class represents both

primitives (Line, Circle) and their / O

containers (Picture)

Client Graphic 0
Picture N
Line Circle %
Children
Draw()
Draw() Draw/() Add(Graphic g)
RemoveGraphic)
GetChild(int)

University of Toronto

CSC301: Introduction to Software Engineering

University of Toronto

CSC301: Introduction to Software Engineering

Composite Pattern

m Facilitates the composition of objects into tree
structures that represent part-whole
hierarchies.

m These hierarchies consist of both primitive
and composite objects.

University of Toronto

CSC301: Introduction to Software Engineering

Composite Design Pattern

operation|)

. children

for all g in children
g.operation(];

University of Toronto

CSC301: Introduction to Software Engineering

Composite Pattern — Participants

m Component

— Declares interface for objects and for accessing
children

— Implements default behavior
m Leaf

— No children; defines behavior for primitive objects
m Composite

— Defines behavior for components with children

— Stores children and implements children-related
operations

m Client

— Manipulates objects in the composition thru’
Component interface.

University of Toronto

CSC301: Introduction to Software Engineering

Composite Pattern - Consequences

m Defines Class hierarchies for recursive
composition.

m Makes clients simple (can treat composite
structures and individual objects uniformly)

m Makes it easy to add new components (no code
needed for components or for clients)

m Can make your design overly general — Harder
to restrict the components of a composite.

University of Toronto

CSC301: Introduction to Software Engineering

Example: AWT Class Hierarchy

AWTEvent Container Panel Applet

Font Button Window Frame

FontMetrics Label Dialog FileDialog
TextField

Color TextComponent

TextArea

Graphics List

Component Chotce

CheckBox

LayouiManager CheckBoxGroup

Canvas

MenuComponent Menultem Menu

MenuBar

Scrollbar

University of Toronto

CSC301: Introduction to Software Engineering

Composite example: layout

Container north = new JPanel(new FlowLayout());
north.add(new JButton(''Button 1'"));
north.add(new JButton('Button 2'"));

Container south = new JPanel(hew BorderLayout());
south.add(new JLabel ("'Southwest'), BorderLayout.WEST);
south.add(new JLabel ("'Southeast'), BorderLayout.EAST);

Container cp = getContentPane();

cp.-add(north, BorderLayout.NORTH);

cp-add(new JButton(''Center Button'), BorderLayout.CENTER);
cp-add(south, BorderLayout.SOUTH);

'E: Composzite layout

Button 1 || Button 2 |

‘ Center Button \

Southwest Southeast

University of Toronto

	CSC301: Introduction to Software Engineering��Lecture 2
	Object Oriented Design: design patterns
	Object Oriented Analysis & Design
	Object Oriented Analysis & Design
	Object Oriented Analysis & Design
	Techniques for Finding Objects
	Another Source for Finding Objects : Design Patterns
	Design Patterns Types
	Design Patterns Types
	Design Patterns Types
	Elements of a Design Pattern
	Pattern: Command
	Command pattern
	Command pattern
	Command Pattern: motivation
	Common UI commands
	Command Pattern: second motivation
	Command pattern - example
	Command pattern Applicability
	Pattern: Singleton
	Singleton Pattern
	Singleton example code
	Pattern: Observer
	Observer pattern
	Observer pattern (continued)
	Observer pattern (cont’d)
	Slide Number 27
	Slide Number 28
	Observer pattern implementation in Java
	Observer Pattern
	Observer Pattern
	Observer Pattern
	Observer Pattern
	Pattern: Template Method
	Pizza Machine Program: what’s Wrong With This?
	The Open-Closed Principle
	Abstraction is the Solution
	How Open Should You Be?
	Template Method Design Pattern
	Override the Template Method?
	Squeeze It Somewhere Else?
	Leave Space for Future Growth?
	Template Method Design Pattern
	Pattern: composite
	What is common between these definitions?
	Introducing the Composite Pattern
	What is common between these definitions?
	Modeling a Software System with a Composite Pattern
	Modeling the Software Lifecycle with a Composite Pattern
	Composite Patterns models dynamic aggregates
	Graphic Applications also use Composite Patterns
	Slide Number 52
	Composite Pattern
	Composite Design Pattern
	Composite Pattern – Participants
	Composite Pattern - Consequences
	Example: AWT Class Hierarchy
	Composite example: layout

