
University of Toronto

CSC301: Introduction to Software
Engineering

Lecture 2

Wael Aboulsaadat

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Design: design patterns

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Analysis & Design
 OOA:

̶ Input: written requirements statement, a formal vision document,
interviews with stakeholders or other interested parties

̶ Target: produce a conceptual model of the information that exists
in the area being analyzed

̶ Output: set of use cases, one or more UML class diagrams, and a
number of interaction diagrams. It may also include some kind of
user interface mock-up

University of Toronto

CSC301: Introduction to Software Engineering

 Identify classes

 Identify relations between classes

OOA Use cases

Class diagrams

Sequence diagrams

Interviews

Observation
Manuals/

Forms

Object Oriented Analysis & Design

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Analysis & Design
 OOD:

̶ Input: conceptual model produced in OOA

̶ Target: a model of the solution domain, how the system is to be built,
given the constraints identified in the OOA

̶ Output: specification of implementation classes and interfaces

OOA OOD

University of Toronto

CSC301: Introduction to Software Engineering

Techniques for Finding Objects
 OOA

̶ Start with Use Cases. Identify participating objects
̶ Textual analysis of flow of events (find nouns, verbs, ...)
̶ Extract application domain objects by interviewing client (application

domain knowledge)
̶ Find objects by using general knowledge

 System Design
̶ Subsystem decomposition
̶ Try to identify layers and partitions

 Object Design
̶ Find additional objects by applying implementation domain knowledge

University of Toronto

CSC301: Introduction to Software Engineering

Another Source for Finding Objects :
Design Patterns
 What are Design Patterns?

̶ A design pattern describes a problem which occurs over and
over again in our environment

̶ Then it describes the core of the solution to that problem, in such
a way that you can use the this solution a million times over,
without ever doing it the same twice

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

 Creational Patterns
̶ Focus: Creation of complex objects
̶ Here we our goal is to provide a simple abstraction for a complex

instantiation process.
̶ We want to make the system independent from the way its objects

are created, composed and represented.
̶ Problems solved:

• Hide how complex objects are created and put together

Creational

Factory Method
Abstract Factory
Builder
Prototype
Singleton

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

 Structural Patterns
̶ Focus: How objects are composed to form larger structures
̶ They reduce the coupling between two or more classes
̶ They introduce an abstract class to enable future extensions
̶ They encapsulate complex structures
̶ Problems solved:

• Realize new functionality from old functionality,
• Provide flexibility and extensibility

Structural

Adapter
Bridge
Composite
Decorator
Flyweight
Facade
Proxy

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

 Behavioral Patterns
̶ Focus: Algorithms and the assignment of responsibilities to objects
̶ Here we are concerned with algorithms and the assignment of

responsibilies between objects: Who does what?
̶ Behavioral patterns allow us to characterize complex control flows

that are difficult to follow at runtime.
̶ Problem solved:

• Too tight coupling to a particular algorithm

Behavioural

Interpreter
Template Method
Chain of Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

University of Toronto

CSC301: Introduction to Software Engineering

Elements of a Design Pattern
 Pattern Name

̶ Increases design vocabulary, higher level of abstraction

 Problem
̶ When to apply the pattern
̶ Problem and context, conditions for applicability of pattern

 Solution
̶ Relationships, responsibilities, and collaborations of design elements
̶ Not any concrete design or implementation, rather a template

 Consequences
̶ Results and trade-offs of applying the pattern
̶ Space and time trade-offs, reusability, extensibility, portability

University of Toronto

Pattern: Command

objects that represent actions…

University of Toronto

CSC301: Introduction to Software Engineering

Command pattern

 Command: an object that represents an action
̶ sometimes called a "functor" to represent an object

whose sole goal is to encapsulate one function

University of Toronto

CSC301: Introduction to Software Engineering

Command pattern

 Client creates a ConcreteCommand and binds it with a
Receiver.

 Client hands the ConcreteCommand over to the Invoker
which stores it.

 The Invoker has the responsibility to do the command
(“execute” or “undo”).

Command

execute()

Receiver

action()

Client

Invoker

ConcreteCommand

execute()

binds

University of Toronto

CSC301: Introduction to Software Engineering

Command Pattern: motivation

 You want to build a user interface
 You want to provide menus
 You want to make the user interface reusable

across many applications
̶ You cannot hardcode the meanings of the menus for

the various applications
̶ The applications only know what has to be done

when a menu is selected.
 Such a menu can easily be implemented with

the Command Pattern

University of Toronto

CSC301: Introduction to Software Engineering

Common UI commands
 it is common in a GUI to have several ways to activate the

same behavior
̶ example: toolbar "Cut" button and "Edit / Cut" menu
̶ this is good ; it makes the program flexible for the user
̶ we'd like to make sure the code implementing these common

commands is not duplicated

University of Toronto

CSC301: Introduction to Software Engineering

Command Pattern: second motivation

 A new way to think about designing the software

University of Toronto

CSC301: Introduction to Software Engineering

Command pattern - example

University of Toronto

CSC301: Introduction to Software Engineering

Command pattern Applicability

 “Encapsulate a request as an object, thereby
letting you
̶ parameterize clients with different requests,
̶ queue or log requests, and
̶ support undoable operations.”

 Uses:
̶ Undo queues
̶ Database transaction buffering

University of Toronto

Pattern: Singleton

At max One Instance of a class!

University of Toronto

CSC301: Introduction to Software Engineering

Singleton Pattern

 Instead the class itself is made responsible for keeping
track of its instance. It can thus ensure that no more than
one instance is created. This is the singleton pattern.

 Used to ensure that a class has only one instance. For
example, one printer spooler object, one file system, one
window manager, etc.

University of Toronto

CSC301: Introduction to Software Engineering

Singleton example code
public class MySingletonClass {

private static MySingletonClass instance
= new MySingletonClass();

public static MySingletonClass getInstance()
{

return instance;
}

/** There can be only one. */
private MySingletonClass() {}

}

University of Toronto

Pattern: Observer

University of Toronto

CSC301: Introduction to Software Engineering

Observer pattern
 “Define a one-to-many dependency between

objects so that when one object changes state,
all its dependents are notified and updated
automatically.”

 Also called “Publish and Subscribe”

 Uses:
̶ Maintaining consistency across redundant state
̶ Optimizing batch changes to maintain consistency

University of Toronto

CSC301: Introduction to Software Engineering

Observer pattern (continued)

9DesignPatterns2.ppt

Observers Subject

University of Toronto

CSC301: Introduction to Software Engineering

Observer pattern (cont’d)

Observer
update()

Subject
attach(observer)
detach(observer)

notify()

ConcreteSubject
getState()

setState(newState)
subjectState

ConcreteObserver
update()

observerState

observers

subject

*

 The Subject represents the actual state, the Observers
represent different views of the state.

 Observer can be implemented as a Java interface.
 Subject is a super class (needs to store the observers

vector) not an interface.

University of Toronto

CSC301: Introduction to Software Engineering

getState()

update()

update()

aListViewanInfoViewaFile

setState(“foo”)

notify()

Attach() Attach()

“foo”

Subject goes through all its
observers and calls update() on

them, asking for the new
state is decoupled from

the notification

University of Toronto

CSC301: Introduction to Software Engineering

getState()

aListViewanInfoViewaFile

notify()

Attach() Attach()

“foo”

setState(“foo”)

update()
update()

University of Toronto

CSC301: Introduction to Software Engineering

Observer pattern implementation in Java
// import java.util;

public class Observable extends Object {
public void addObserver(Observer o);
public void deleteObserver(Observer o);
public boolean hasChanged();
public void notifyObservers();
public void notifyObservers(Object arg);

}

public abstract interface Observer {
public abstract void update(Observable o, Object arg);

}
public class Subject extends Observable{

public void setState(String filename);
public string getState();

}

University of Toronto

CSC301: Introduction to Software Engineering

Observer Pattern

University of Toronto

CSC301: Introduction to Software Engineering

Observer Pattern

Subject

attach (Observer)

detach (Observer)

Notify ()

Observer

Update()

Concrete Observer

Update()

observerState

Concrete Subject

GetState()

SetState()

subjectState

observers

subject

For all x in observers{
x Update(); }

observerState=
subject getState();

University of Toronto

CSC301: Introduction to Software Engineering

Observer Pattern

 Need to separate presentational aspects with the data,
i.e. separate views and data.

 Classes defining application data and presentation can be
reused.

 Change in one view automatically reflected in other views.
Also, change in the application data is reflected in all
views.

 Defines one-to-many dependency amongst objects so that
when one object changes its state, all its dependents are
notified.

University of Toronto

CSC301: Introduction to Software Engineering

Observer Pattern

 GUI programming example

University of Toronto

Pattern: Template Method

University of Toronto

CSC301: Introduction to Software Engineering

Pizza Machine Program: what’s Wrong With This?
public class PizzaMaker {
public void cookPizzas(List pizzas) {
for (int i=0; i<pizzas.size(); ++i) {
Object pizza = pizzas.get(i);
if (pizza instanceof ThinCrustPizza) {
((ThinCrustPizza)pizza).cookInWoodFireOven();

}
else if (pizza instanceof PanPizza) {
((PanPizza)pizza).cookInGreasyPan();

}
else {

}
}

}
}

University of Toronto

CSC301: Introduction to Software Engineering

The Open-Closed Principle

 Classes should be open for extension, but
closed for modification
̶ .e., you should be able to extend a system without

modifying the existing code

 The type-switch in the example violates this
̶ Have to edit the code every time the marketing

department comes up with a new kind of pizza

University of Toronto

CSC301: Introduction to Software Engineering

Abstraction is the Solution

 Solve the problem by creating a Pizza interface
with a cook method
̶ Or an abstract base class whose cook method must

be overridden by every child

 Simple, right?

University of Toronto

CSC301: Introduction to Software Engineering

How Open Should You Be?

public abstract class Pizza {
public final void cook() {
placeOnCookingSurface();
placeInCookingDevice();
int cookTime = getCookTime();
letItCook(cookTime);
removeFromCookingDevice();

}
protected abstract void placeOnCookingSurface();
protected abstract void placeInCookingDevice();
protected abstract int getCookTime();
protected abstract void letItCook(int min);
protected abstract void removeFromCookingDevice();

}

University of Toronto

CSC301: Introduction to Software Engineering

Template Method Design Pattern

 The Template Method design pattern is used to
set up the skeleton of an algorithm
̶ Details then filled in by concrete subclasses

 But what if someone wants to do something you
didn’t anticipate?
̶ E.g., wants to add a PancakePizza that has to be

flipped over halfway through the cooking process

University of Toronto

CSC301: Introduction to Software Engineering

Override the Template Method?

public final void cook() {
placeOnCookingSurface();
placeInCookingDevice();
int cookTime = getCookTime();
letItCook(cookTime/2);
flip();
letItCook(cookTime/2);
removeFromCookingDevice();

}
– But cook was final

– And it’s storing up trouble for the future

University of Toronto

CSC301: Introduction to Software Engineering

Squeeze It Somewhere Else?

protected void removeFromCookingDevice() {
flip();
letItCook(cookTime);
…remove from skillet…

}

– removeFromCookingDevice shouldn’t be
doing other things
– Think about the documentation

– And once again, we’re storing up trouble for the
future

University of Toronto

CSC301: Introduction to Software Engineering

Leave Space for Future Growth?

public final void cook() {
beforePlacingOnCookingSurface();
placeOnCookingSurface();
beforePlacingInCookingDevice();
placeInCookingDevice();
beforeCooking();
for (int i=0; i<getCookingPhases(); i++) {
letItCook(getCookTime(i));
afterCookingPhase(i);

}
beforeRemovingFromCookingDevice();
removeFromCookingDevice();
afterRemovingFromCookingDevice();

}

University of Toronto

CSC301: Introduction to Software Engineering

Template Method Design Pattern

University of Toronto

Pattern: composite

University of Toronto

CSC301: Introduction to Software Engineering

What is common between these definitions?
 Definition - Software System

̶ A software system consists of subsystems which are either
other subsystems or collection of classes

 Definition - Software Lifecycle:
̶ The software lifecycle consists of a set of development

activities which are either other activities or collection of tasks

University of Toronto

CSC301: Introduction to Software Engineering

Introducing the Composite Pattern
 Models tree structures that represent part-whole

hierarchies with arbitrary depth and width.
 The Composite Pattern lets client treat individual objects

and compositions of these objects uniformly

Client Component

Leaf

Operation()

Composite

Operation()
AddComponent

RemoveComponent()
GetChild()

Children

University of Toronto

CSC301: Introduction to Software Engineering

What is common between these definitions?
 Software System:

̶ Definition: A software system consists of subsystems which are
either other subsystems or collection of classes

̶ Composite: Subsystem (A software system consists of
subsystems which consists of subsystems , which consists of
subsystems, which...)

̶ Leaf node: Class

 Software Lifecycle:
̶ Definition: The software lifecycle consists of a set of

development activities which are either other actitivies or
collection of tasks

̶ Composite: Activity (The software lifecycle consists of activities
which consist of activities, which consist of activities, which....)

̶ Leaf node: Task

University of Toronto

CSC301: Introduction to Software Engineering

Modeling a Software System with a
Composite Pattern

Software
System

Class
Subsystem Children

*
User

University of Toronto

CSC301: Introduction to Software Engineering

Modeling the Software Lifecycle with a
Composite Pattern

Software
Lifecycle

Task
Activity Children

*
Manager

University of Toronto

CSC301: Introduction to Software Engineering

Composite Patterns models dynamic aggregates

University School Department

Organization Chart (variable aggregate):

Dynamic tree (recursive aggregate):

CarFixed Structure:

Doors Wheels Battery Engine

Compound
Statement

Simple
Statement

Program

Block

* *

* *

*
*Dynamic tree (recursive aggregate):

Composite
Pattern

University of Toronto

CSC301: Introduction to Software Engineering

Graphic Applications also use Composite
Patterns

Client Graphic

Circle

Draw()

Picture

Draw()
Add(Graphic g)
RemoveGraphic)

GetChild(int)

Children
Line

Draw()

• The Graphic Class represents both
primitives (Line, Circle) and their

containers (Picture)

University of Toronto

CSC301: Introduction to Software Engineering

University of Toronto

CSC301: Introduction to Software Engineering

Composite Pattern

 Facilitates the composition of objects into tree
structures that represent part-whole
hierarchies.

 These hierarchies consist of both primitive
and composite objects.

University of Toronto

CSC301: Introduction to Software Engineering

Composite Design Pattern

University of Toronto

CSC301: Introduction to Software Engineering

Composite Pattern – Participants
 Component

̶ Declares interface for objects and for accessing
children

̶ Implements default behavior
 Leaf

̶ No children; defines behavior for primitive objects
 Composite

̶ Defines behavior for components with children
̶ Stores children and implements children-related

operations
 Client

̶ Manipulates objects in the composition thru’
Component interface.

University of Toronto

CSC301: Introduction to Software Engineering

Composite Pattern - Consequences
 Defines Class hierarchies for recursive

composition.
 Makes clients simple (can treat composite

structures and individual objects uniformly)
 Makes it easy to add new components (no code

needed for components or for clients)
 Can make your design overly general – Harder

to restrict the components of a composite.

University of Toronto

CSC301: Introduction to Software Engineering

Example: AWT Class Hierarchy

University of Toronto

CSC301: Introduction to Software Engineering

Composite example: layout
Container north = new JPanel(new FlowLayout());
north.add(new JButton("Button 1"));
north.add(new JButton("Button 2"));

Container south = new JPanel(new BorderLayout());
south.add(new JLabel("Southwest"), BorderLayout.WEST);
south.add(new JLabel("Southeast"), BorderLayout.EAST);

Container cp = getContentPane();
cp.add(north, BorderLayout.NORTH);
cp.add(new JButton("Center Button"), BorderLayout.CENTER);
cp.add(south, BorderLayout.SOUTH);

	CSC301: Introduction to Software Engineering��Lecture 2
	Object Oriented Design: design patterns
	Object Oriented Analysis & Design
	Object Oriented Analysis & Design
	Object Oriented Analysis & Design
	Techniques for Finding Objects
	Another Source for Finding Objects : Design Patterns
	Design Patterns Types
	Design Patterns Types
	Design Patterns Types
	Elements of a Design Pattern
	Pattern: Command
	Command pattern
	Command pattern
	Command Pattern: motivation
	Common UI commands
	Command Pattern: second motivation
	Command pattern - example
	Command pattern Applicability
	Pattern: Singleton
	Singleton Pattern
	Singleton example code
	Pattern: Observer
	Observer pattern
	Observer pattern (continued)
	Observer pattern (cont’d)
	Slide Number 27
	Slide Number 28
	Observer pattern implementation in Java
	Observer Pattern
	Observer Pattern
	Observer Pattern
	Observer Pattern
	Pattern: Template Method
	Pizza Machine Program: what’s Wrong With This?
	The Open-Closed Principle
	Abstraction is the Solution
	How Open Should You Be?
	Template Method Design Pattern
	Override the Template Method?
	Squeeze It Somewhere Else?
	Leave Space for Future Growth?
	Template Method Design Pattern
	Pattern: composite
	What is common between these definitions?
	Introducing the Composite Pattern
	What is common between these definitions?
	Modeling a Software System with a Composite Pattern
	Modeling the Software Lifecycle with a Composite Pattern
	Composite Patterns models dynamic aggregates
	Graphic Applications also use Composite Patterns
	Slide Number 52
	Composite Pattern
	Composite Design Pattern
	Composite Pattern – Participants
	Composite Pattern - Consequences
	Example: AWT Class Hierarchy
	Composite example: layout

