CSC301: Introduction to
Software Engineering

Lecture 3

Wael Aboulsaadat

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Design: design patterns

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

m Creational Patterns

Focus: Creation of complex objects

Here we our goal is to provide a simple abstraction for a complex
instantiation process.

We want to make the system independent from the way its objects
are created, composed and represented.

Problems solved:
* Hide how complex objects are created and put together

Creational

Factory Method
Abstract Factory
Builder
Prototype

—> Singleton

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

m Structural Patterns

— Focus: How objects are composed to form larger structures
— They reduce the coupling between two or more classes

— They introduce an abstract class to enable future extensions
— They encapsulate complex structures

Structural

— Problems solved: Adapter
* Realize new functionality from old functionality, Bridge
. oy ey- A > C it
- Provide flexibility and extensibility SMEEs
Decorator
Flyweight
Facade
Proxy

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

m Behavioral Patterns

— Focus: Algorithms and the assignment of responsibilities to objects

— Here we are concerned with algorithms and the assignment of
responsibilies between objects: Who does what?

— Behavioral patterns allow us to characterize complex control flows
that are difficult to follow at runtime.

— Problem solved: Interpreter

« Too tight coupling to a particular algorithm - Template Method
Chain of Responsibility
- Command

Iterator

Mediator

Memento

—> Observer

State

Strategy

Visitor

Behavioural

University of Toronto

Pattern: proxy

University of Toronto

CSC301: Introduction to Software Engineering

Proxy Pattern: Motivation

m 15:00pm: prime web time. Users with 14.4 baud
modem connection can not access web pages
with a lot of graphics — their browser times out.

s Which pattern help in this scenario?

University of Toronto

CSC301: Introduction to Software Engineering

Proxy Pattern

s What is expensive?
— Object download
— QObject Creation
— QObject Initialization

m Defer to the time you need the object

m Proxy pattern:
— Reduces the cost of accessing objects

— Uses another object (“the proxy”) that acts as a stand-in
for the real object

— The proxy creates the real object only if the user asks for it

University of Toronto

CSC301: Introduction to Software Engineering

Proxy pattern Subject
Request()
| AI |
Proxy realSubject RealSubject
Request() ' Request()

m Interface inheritance is used to specify the interface shared
by Proxy and RealSubiject.

m Delegation is used to catch and forward any accesses to the
RealSubject (if desired)

m Proxy patterns can be used for lazy evaluation and for
remote invocation.

m Proxy patterns can be implemented with a Java interface.

University of Toronto

CSC301: Introduction to Software Engineering

Proxy Applicability
= Remote Proxy
— Local representative for an object in a different address space
— Caching of information: Good if information does not change too
often
= Virtual Proxy

— Object is too expensive to create or too expensive to download

m Protection Proxy
— Proxy provides access control to the real object

— Useful when different objects should have different access and
viewing rights for the same document.

— Example: Grade information for a student shared by
administrators, teachers and students.

University of Toronto

CSC301: Introduction to Software Engineering

Virtual Proxy example image

boundingBox()

draw()
A

Proxylmaqe realSubject Real'lmaqe
boundingBox() > boundingBox()
draw() draw()

m Images are stored and loaded separately from text

m If a Reallmage is not loaded a Proxylmage displays a
grey rectangle in place of the image

m The client cannot tell that it is dealing with a Proxylmage
Instead of a Reallmage

University of Toronto

CSC301: Introduction to Software Engineering

Before

4l

Guide Irnages

DUTPOST TODAY
Jun. 10, 1998

GLOBAL VILLAGE

s+l LE R (To o Por

’ PLUS MAC OS5 B

|— (LIMITED TIME OHNLY) {LIMITED TIME OMLYY
NETWORKING
| Mac PC Sk

'% $59 9* $1549 00 $69 95 HIIXI'IIIIII‘E%I
IN

wm-r s NEW TEL
ROCESSOR.
FOR LUNCH!

& .aw
TeT OPAYLZ

University of Toronto

CSC301: Introduction to Software Engineering

Controlling Access

Preferences

Category :

7 Appearance Advanced Change preferences that affect the entire product.
Fonts

Calors
< Navigator [] Automatically load images and other data types

Languages (Otherwise, click the Images button to load when needed)

Applications
Enable Java
Identity E

[Advanced @ Enable JavaSoript

[X] Enable style sheets

[EI Enable Autolnstall

D Send email address as anonymous FTF password
Cookies

(O Accept all cookies

@ Accept only cookies that get sent back to the originating server

(0 Do not accept cookies

[] Warn me before accepting a cookie

[Help] [Cancel ||

University of Toronto

CSC301: Introduction to Software Engineering

After

Print

OUTPOST TODAY
Jun. 10, 1998
The Cool Place to Shop For Computer Stufff

Ship Internationally /
Call: (8007856-9800 | {860)927-2050 | F 92 '5

PC PC Mac
$59.95 $499.95 $1649.00

2 11 Power Search

Transferring data from search.out

University of Toronto

Pattern: strategy

University of Toronto

CSC301: Introduction to Software Engineering

Strategy Pattern

Many different algorithms exists for the same task

Examples:

— Breaking a stream of text into lines

— Parsing a set of tokens into an abstract syntax tree
— Sorting a list of customers

The different algorithms will be appropriate at different
times
— Rapid prototyping vs delivery of final product

We don’t want to support all the algorithms if we don’t
need them

If we need a new algorithm, we want to add it easily
without disturbing the application using the algorithm

University of Toronto

CSC301: Introduction to Software Engineering

Strategy Pattern

.................... Policy
Context i
<> g Strategy
Contextinterface() Algorithminterface
|
ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC
Algorithminterface() AlgorithmInterface() Algorithminterface()

Policy decides which Strategy is best given the current Context

University of Toronto

CSC301: Introduction to Software Engineering

Applying a Strategy Pattern in a Database
Application

Database

*
|~ Strategy Strategy
Search() N Sort()

Sort() A

BubbleSort QuickSort MergeSort

Sort() Sort() Sort()

University of Toronto

CSC301: Introduction to Software Engineering

Applicability of Strategy Pattern

s Many related classes differ only in their
behavior. Strategy allows to configure a single
class with one of many behaviors

m Different variants of an algorithm are needed
that trade-off space against time. All these
variants can be implemented as a class

hierarchy of algorithms

University of Toronto

Pattern: abstract factory

University of Toronto

CSC301: Introduction to Software Engineering

Abstract Factory Motivation

2 Examples...

Consider a user interface toolkit that supports multiple
looks and feel standards such as Motif, Windows 95 or
the finder in MacOS.

— How can you write a single user interface and make it portable
across the different look and feel standards for these window
managers?

Consider a facility management system for an intelligent

house that supports different control systems such as

Siemens’ Instabus, Johnson & Control Metasys or

Zumtobe’s proprietary standard.

— How can you write a single control system that is independent
from the manufacturer?

University of Toronto

CSC301: Introduction to Software Engineering

Abstract Factory

AbstractFactory AbstractProductA
SHE! CreateProductA *
CreateProductB
/A ProductAl ProductA2
ConcreteFactorY AbstractProductB
L
CreateProductA
CreateProductB *
I ProductB1 ProductB?2
ConcreteFactory
2
CreateProductA Initiation Assocatipn:_
CreateProductB Class ConcreteFactory?2 initiates the

associated classes ProductB2 and ProductA2

University of Toronto

CSC301: Introduction to Software Engineering

Applicability for Abstract Factory Pattern

= Independence from Initialization or Representation:

— The system should be independent of how its products are created,
composed or represented

s Manufacturer Independence:

— A system should be configured with one family of products, where one
has a choice from many different families.

— You want to provide a class library for a customer (“facility management

library™), but you don’t want to reveal what particular product you are
using.

m Constraints on related products

— A family of related products is designed to be used together and you
need to enforce this constraint

s Cope with upcoming change:

— You use one particular product family, but you expect that the underlying

technology is changing very soon, and new products will appear on the
market.

University of Toronto

CSC301: Introduction to Software Engineering

A Facility Management System for the Intelliaent Workplace

IntelligentWorkplace :
Facility LightBulb
Mgt InitLightSystem
System InitBlindSystem A ,
InitACSystem |
____________________ InstabusLight | [ZumbobelLight
: Controller Controller
AN
_ : Blinds
S|em ens Factory:
InitLightSystem *
InitBlindSystem E
InitACSystem :

InstabusBlind ZumtobelBlind
Controller Controller

ZumtobelFactor

y
InitLightSystem
InitBlindsystem

InitACSystem

University of Toronto

Pattern: builder

University of Toronto

CSC301: Introduction to Software Engineering

Builder Pattern Motivation
m Conversion of documents

m Software companies make their money by introducing
new formats, forcing users to upgrades

— But you don’t want to upgrade your software every time there is
an update of the format for Word documents

m |ldea: A reader for RTF format

— Convert RTF to many text formats (EMACS, Framemaker 4.0,

Framemaker 5.0, Framemaker 5.5, HTML, SGML, WordPerfect
3.5, WordPerfect 7.0,)

* Problem: The number of conversions is open-ended.
= Solution
— Configure the RTF Reader with a “builder” object that specializes

In conversions to any known format and can easily be extended
to deal with any new format appearing on the market

University of Toronto

CSC301: Introduction to Software Engineering

Builder Pattern

Director Builder
VN
Construct() N BuildPart()
N
For all objects in Structure { /\
Builder->BuildPart()

}

ConcreteBuilderB

BuildPart()
GetResult()

ConcreteBuilder

BuildPart()
GetResult()

A

Represen-

tation A

Represen-
tation B

University of Toronto

CSC301: Introduction to Software Engineering

Example
RTFReader
Parse() O\ TextConverter
ConvertCharacter()
ConvertFontChange
ConvertParagraph()
While (t = GetNextToken())F
Switch t. Type {
CHAR: builder->ConvertCharacter(t.Char)
FONT: bulder->ConvertFont(t.Font)
PARA: builder->ConvertParagraph
}
— 1
TexConverter AsciiConverter HTMLConverter
ConvertCharacter () ConvertCharacter ConvertCharacter
ConvertFontChange ConvertFontChar.g:jOe ConvertFontChené)e
ConvertParagraph() ConvertParagraph() ConvertParagraph()
GetASClIText() GetASClITexty) GetASClIIText()
l
‘ TeXText AsciiText HTMLText

University of Toronto

CSC301: Introduction to Software Engineering

When do you use the Builder Pattern?

m The creation of a complex product must be independent
of the particular parts that make up the product

— In particular, the creation process should not know about the

assembly process (how the parts are put together to make up
the product)

m The creation process must allow different
representations for the object that is constructed.
Examples:

— A house with one floor, 3 rooms, 2 hallways, 1 garage and three
doors.

— A skyscraper with 50 floors, 15 offices and 5 hallways on each
floor. The office layout varies for each floor.

University of Toronto

CSC301: Introduction to Software Engineering

Comparison: Abstract Factory vs Builder
m Abstract Factory
— Focuses on product family
* The products can be simple (“light bulb”) or complex (“engine™)
— Does not hide the creation process
e The product is immediately returned

m Builder

— The underlying product needs to be constructed as part of the
system, but the creation is very complex

— The construction of the complex product changes from time to time
— The builder patterns hides the creation process from the user:
* The product is returned after creation as a final step

University of Toronto

Pattern: adapter

University of Toronto

CSC301: Introduction to Software Engineering

Adapter pattern

ClientInterface LegacyClass

Client —
Regquest() ExistingRequest()

A

| adaptee

Adapter

Request()

m Delegation is used to
bind an Adapter and an Adaptee

m Interface inheritance is use to specify the interface of the Adapter
class.

m Target and Adaptee (usually called legacy system) pre-exist the
Adapter.

m Target may be realized as an interface in Java.

University of Toronto

CSC301: Introduction to Software Engineering

Adapter Pattern

m “Convert the interface of a class into another interface
clients expect.”

m The adapter pattern lets classes work together that
couldn’t otherwise because of incompatible interfaces

m Used to provide a new interface to existing legacy
components (Interface engineering, reengineering).

m Also known as a wrapper

University of Toronto

CSC301: Introduction to Software Engineering

Adapter Pattern

m Two adapter patterns:
— Class adapter:
» Uses multiple inheritance to adapt one interface to another
— Object adapter:
» Uses single inheritance and delegation

m Object adapters are much more frequent. We will only
cover object adapters (and call them therefore simply
adapters)

University of Toronto

Pattern: bridge

University of Toronto

CSC301: Introduction to Software Engineering

Bridge Pattern

m Use a bridge to “decouple an abstraction from its
Implementation so that the two can vary independently”.

m Also know as a Handle/Body pattern.

m Allows different implementations of an interface to be
decided upon dynamically.

University of Toronto

CSC301: Introduction to Software Engineering

Using a Bridge
m The bridge pattern is used to provide multiple
Implementations under the same interface.

s Examples: Interface to a component that is incomplete,
not yet known or unavailable during testing

s JAMES Project: if seat data is required to be read, but
the seat Is not yet implemented, known, or only available
by a simulation, provide a bridge:

VIP

Seat imp
(in VelTlf:le Sulisysiein) SeatImplementation
GetPosition()
SetPosition() 2>
| |
Stub Code AIMSeat SARTSeat

University of Toronto

CSC301: Introduction to Software Engineering

Seat Implementation

public interface Seatimplementation {
public int GetPosition();
public void SetPosition(int newPaosition);
}
public class Stubcode implements Seatimplementation {

public int GetPosition() {_
/I stub code for GetPosition

public class AimSeat implements Seatimplementation {

public int GetPositionﬁM _ _
/[actual call to the AIM simulation system

public class SARTSeat implements Seatimplementation {

public int GetPosition(

} /I actual call to the S)&I&T seat simulator

o

University of Toronto

CSC301: Introduction to Software Engineering

Bridge Pattern

Abstraction . Implementor

Operation() @) : .
Dperation() : OperationImpl()

Imp->OperationImpi(); A

Refined Abstraction 1| |Refined Abstraction ? Concrete Implementor A| |Concrete Implementor B

Operation() Operation() OperationImpl() Operationlmpl()

University of Toronto

CSC301: Introduction to Software Engineering

Adapter vs Bridge

= Similarities:
— Both are used to hide the details of the underlying implementation.

m Difference;

— The adapter pattern is geared towards making unrelated components
work together

» Applied to systems after they’'re designed (reengineering, interface
engineering).
— A bridge, on the other hand, is used up-front in a design to let
abstractions and implementations vary independently.

* New “beasts” can be added to the “object zoo”, even if these are
not known at analysis or system design time.

University of Toronto

Pattern: facade

University of Toronto

CSC301: Introduction to Software Engineering

First: what are subsystems ?

m A collection of related classes are grouped together in a
conceptual entity we call subsystem

m A software consists of subsystems where every
subsystem consist of classes.

Subsystem 1

Subsystem 2 Subsystem 3

Subsystem 2.1

Subsystem 2

University of Toronto

CSC301: Introduction to Software Engineering

Facade Pattern

= Provides a unified interface to a set of objects in a
subsystem.

m A facade defines a higher-level interface that makes the
subsystem easier to use (i.e. it abstracts out the gory
details)

m Facades allow us to provide a closed architecture

University of Toronto

CSC301: Introduction to Software Engineering

Design Example

Subsystem 1 can look into the

Subsystem 2 (vehicle subsystem)

and call on any component or class

operation at will.

This is “Ravioli Design”

Why is this good?

— Efficiency

Why is this bad?

— Can’t expect the caller to
understand how the subsystem

works or the complex relationships
within the subsystem.

— We can be assured that the
subsystem will be misused, leading
to non-portable code

Subsystem 1

AVA \/ //

AIM

SA/RT

University of Toronto

CSC301: Introduction to Software Engineering

Realizing an Opaque Architecture with a

Facade

m The subsystem decides
exactly how it is
accessed.

= No need to worry about
misuse by callers

m If afacade is used the
subsystem can be used
In an early integration test

— We need to write only a
driver

VIP Subsystem

Wivi

Vehicle Subsystem API

Card

Seat—

AIM

SA/RT

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns: discussion

= Not just about object-oriented design
— User interface patterns
— Business patterns
— Anti-patterns (things to avoid)

m Be careful, not every coding problem is a design
pattern

University of Toronto

	CSC301: Introduction to �Software Engineering��Lecture 3
	Object Oriented Design: design patterns
	Design Patterns Types
	Design Patterns Types
	Design Patterns Types
	Pattern: proxy
	Proxy Pattern: Motivation
	Proxy Pattern
	Proxy pattern
	Proxy Applicability
	Virtual Proxy example
	Before
	Controlling Access
	After
	Pattern: strategy
	Strategy Pattern
	Strategy Pattern
	Applying a Strategy Pattern in a Database Application
	Applicability of Strategy Pattern
	Pattern: abstract factory
	Abstract Factory Motivation�
	Abstract Factory�
	Applicability for Abstract Factory Pattern
	 A Facility Management System for the Intelligent Workplace
	Pattern: builder
	Builder Pattern Motivation
	Builder Pattern
	Example
	When do you use the Builder Pattern?
	Comparison: Abstract Factory vs Builder
	Pattern: adapter
	Adapter pattern
	Adapter Pattern
	Adapter Pattern
	Pattern: bridge
	Bridge Pattern
	Using a Bridge
	Seat Implementation
	Bridge Pattern
	Adapter vs Bridge
	Pattern: facade
	First: what are subsystems ?
	Facade Pattern
	Design Example
	Realizing an Opaque Architecture with a Facade
	Design Patterns: discussion

