
University of Toronto

CSC301: Introduction to
Software Engineering

Lecture 3

Wael Aboulsaadat

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Design: design patterns

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

 Creational Patterns
̶ Focus: Creation of complex objects
̶ Here we our goal is to provide a simple abstraction for a complex

instantiation process.
̶ We want to make the system independent from the way its objects

are created, composed and represented.
̶ Problems solved:

• Hide how complex objects are created and put together

Creational

Factory Method
Abstract Factory
Builder
Prototype
 Singleton

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

 Structural Patterns
̶ Focus: How objects are composed to form larger structures
̶ They reduce the coupling between two or more classes
̶ They introduce an abstract class to enable future extensions
̶ They encapsulate complex structures
̶ Problems solved:

• Realize new functionality from old functionality,
• Provide flexibility and extensibility

Structural

Adapter
Bridge
 Composite
Decorator
Flyweight
Facade
Proxy

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

 Behavioral Patterns
̶ Focus: Algorithms and the assignment of responsibilities to objects
̶ Here we are concerned with algorithms and the assignment of

responsibilies between objects: Who does what?
̶ Behavioral patterns allow us to characterize complex control flows

that are difficult to follow at runtime.
̶ Problem solved:

• Too tight coupling to a particular algorithm

Behavioural

Interpreter
 Template Method
Chain of Responsibility
 Command
Iterator
Mediator
Memento
 Observer
State
Strategy
Visitor

University of Toronto

Pattern: proxy

University of Toronto

CSC301: Introduction to Software Engineering

Proxy Pattern: Motivation

 15:00pm: prime web time. Users with 14.4 baud
modem connection can not access web pages
with a lot of graphics – their browser times out.

 Which pattern help in this scenario?

University of Toronto

CSC301: Introduction to Software Engineering

Proxy Pattern

 What is expensive?
̶ Object download
̶ Object Creation
̶ Object Initialization

 Defer to the time you need the object
 Proxy pattern:

̶ Reduces the cost of accessing objects
̶ Uses another object (“the proxy”) that acts as a stand-in

for the real object
̶ The proxy creates the real object only if the user asks for it

University of Toronto

CSC301: Introduction to Software Engineering

Proxy pattern

 Interface inheritance is used to specify the interface shared
by Proxy and RealSubject.

 Delegation is used to catch and forward any accesses to the
RealSubject (if desired)

 Proxy patterns can be used for lazy evaluation and for
remote invocation.

 Proxy patterns can be implemented with a Java interface.

Subject

Request()

RealSubject

Request()

Proxy

Request()

realSubject

University of Toronto

CSC301: Introduction to Software Engineering

Proxy Applicability
 Remote Proxy

̶ Local representative for an object in a different address space
̶ Caching of information: Good if information does not change too

often

 Virtual Proxy
̶ Object is too expensive to create or too expensive to download

 Protection Proxy
̶ Proxy provides access control to the real object
̶ Useful when different objects should have different access and

viewing rights for the same document.
̶ Example: Grade information for a student shared by

administrators, teachers and students.

University of Toronto

CSC301: Introduction to Software Engineering

Virtual Proxy example

 Images are stored and loaded separately from text
 If a RealImage is not loaded a ProxyImage displays a

grey rectangle in place of the image
 The client cannot tell that it is dealing with a ProxyImage

instead of a RealImage

Image
boundingBox()

draw()

realSubject RealImage
boundingBox()

draw()

ProxyImage
boundingBox()

draw()

University of Toronto

CSC301: Introduction to Software Engineering

Before

University of Toronto

CSC301: Introduction to Software Engineering

Controlling Access

University of Toronto

CSC301: Introduction to Software Engineering

After

University of Toronto

Pattern: strategy

University of Toronto

CSC301: Introduction to Software Engineering

Strategy Pattern
 Many different algorithms exists for the same task
 Examples:

̶ Breaking a stream of text into lines
̶ Parsing a set of tokens into an abstract syntax tree
̶ Sorting a list of customers

 The different algorithms will be appropriate at different
times
̶ Rapid prototyping vs delivery of final product

 We don’t want to support all the algorithms if we don’t
need them

 If we need a new algorithm, we want to add it easily
without disturbing the application using the algorithm

University of Toronto

CSC301: Introduction to Software Engineering

Strategy Pattern

Strategy
AlgorithmInterface

Context

ContextInterface()

ConcreteStrategyC

AlgorithmInterface()

*

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

Policy

Policy decides which Strategy is best given the current Context

University of Toronto

CSC301: Introduction to Software Engineering

Applying a Strategy Pattern in a Database
Application

Strategy
Sort()

Database

Search()
Sort()

Strategy *

BubbleSort

Sort()

QuickSort

Sort()

MergeSort

Sort()

University of Toronto

CSC301: Introduction to Software Engineering

Applicability of Strategy Pattern

 Many related classes differ only in their
behavior. Strategy allows to configure a single
class with one of many behaviors

 Different variants of an algorithm are needed
that trade-off space against time. All these
variants can be implemented as a class
hierarchy of algorithms

University of Toronto

Pattern: abstract factory

University of Toronto

CSC301: Introduction to Software Engineering

Abstract Factory Motivation
 2 Examples…
 Consider a user interface toolkit that supports multiple

looks and feel standards such as Motif, Windows 95 or
the finder in MacOS.
̶ How can you write a single user interface and make it portable

across the different look and feel standards for these window
managers?

 Consider a facility management system for an intelligent
house that supports different control systems such as
Siemens’ Instabus, Johnson & Control Metasys or
Zumtobe’s proprietary standard.
̶ How can you write a single control system that is independent

from the manufacturer?

University of Toronto

CSC301: Introduction to Software Engineering

Abstract Factory
AbstractFactory

CreateProductA
CreateProductB

CreateProductA
CreateProductB

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

ConcreteFactory
1

CreateProductA
CreateProductB

ConcreteFactory
2

Client

Initiation Assocation:
Class ConcreteFactory2 initiates the

associated classes ProductB2 and ProductA2

University of Toronto

CSC301: Introduction to Software Engineering

Applicability for Abstract Factory Pattern
 Independence from Initialization or Representation:

̶ The system should be independent of how its products are created,
composed or represented

 Manufacturer Independence:
̶ A system should be configured with one family of products, where one

has a choice from many different families.
̶ You want to provide a class library for a customer (“facility management

library”), but you don’t want to reveal what particular product you are
using.

 Constraints on related products
̶ A family of related products is designed to be used together and you

need to enforce this constraint
 Cope with upcoming change:

̶ You use one particular product family, but you expect that the underlying
technology is changing very soon, and new products will appear on the
market.

University of Toronto

CSC301: Introduction to Software Engineering

A Facility Management System for the Intelligent Workplace
IntelligentWorkplace

InitLightSystem
InitBlindSystem
InitACSystem

InitLightSystem
InitBlindSystem
InitACSystem

LightBulb

InstabusLight
Controller

ZumbobelLight
Controller

Blinds

InstabusBlind
Controller

ZumtobelBlind
Controller

SiemensFactory

InitLightSystem
InitBlindsystem
InitACSystem

ZumtobelFactor
y

Facility
Mgt

System

University of Toronto

Pattern: builder

University of Toronto

CSC301: Introduction to Software Engineering

Builder Pattern Motivation
 Conversion of documents
 Software companies make their money by introducing

new formats, forcing users to upgrades
̶ But you don’t want to upgrade your software every time there is

an update of the format for Word documents

 Idea: A reader for RTF format
̶ Convert RTF to many text formats (EMACS, Framemaker 4.0,

Framemaker 5.0, Framemaker 5.5, HTML, SGML, WordPerfect
3.5, WordPerfect 7.0, ….)

• Problem: The number of conversions is open-ended.

 Solution
̶ Configure the RTF Reader with a “builder” object that specializes

in conversions to any known format and can easily be extended
to deal with any new format appearing on the market

University of Toronto

CSC301: Introduction to Software Engineering

Builder Pattern

Construct()
Director

For all objects in Structure {
Builder->BuildPart()

}

BuildPart()
Builder

BuildPart()
GetResult()

ConcreteBuilderB Represen-
tation B

BuildPart()
GetResult()

ConcreteBuilder
A

Represen-
tation A

University of Toronto

CSC301: Introduction to Software Engineering

Example

Parse()
RTFReader

While (t = GetNextToken()) {
Switch t.Type {

CHAR: builder->ConvertCharacter(t.Char)
FONT: bulder->ConvertFont(t.Font)
PARA: builder->ConvertParagraph

}
}

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

TextConverter

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

GetASCIIText()

AsciiConverter

AsciiText

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

GetASCIIText()

TexConverter

TeXText

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

GetASCIIText()

HTMLConverter

HTMLText

University of Toronto

CSC301: Introduction to Software Engineering

When do you use the Builder Pattern?
 The creation of a complex product must be independent

of the particular parts that make up the product
̶ In particular, the creation process should not know about the

assembly process (how the parts are put together to make up
the product)

 The creation process must allow different
representations for the object that is constructed.
Examples:
̶ A house with one floor, 3 rooms, 2 hallways, 1 garage and three

doors.
̶ A skyscraper with 50 floors, 15 offices and 5 hallways on each

floor. The office layout varies for each floor.

University of Toronto

CSC301: Introduction to Software Engineering

Comparison: Abstract Factory vs Builder
 Abstract Factory

̶ Focuses on product family
• The products can be simple (“light bulb”) or complex (“engine”)

̶ Does not hide the creation process
• The product is immediately returned

 Builder
̶ The underlying product needs to be constructed as part of the

system, but the creation is very complex
̶ The construction of the complex product changes from time to time
̶ The builder patterns hides the creation process from the user:

• The product is returned after creation as a final step

University of Toronto

Pattern: adapter

University of Toronto

CSC301: Introduction to Software Engineering

 Delegation is used to
bind an Adapter and an Adaptee

 Interface inheritance is use to specify the interface of the Adapter
class.

 Target and Adaptee (usually called legacy system) pre-exist the
Adapter.

 Target may be realized as an interface in Java.

Adapter pattern

Client
ClientInterface

Request()

LegacyClass

ExistingRequest()

Adapter

Request()

adaptee

University of Toronto

CSC301: Introduction to Software Engineering

Adapter Pattern
 “Convert the interface of a class into another interface

clients expect.”

 The adapter pattern lets classes work together that
couldn’t otherwise because of incompatible interfaces

 Used to provide a new interface to existing legacy
components (Interface engineering, reengineering).

 Also known as a wrapper

University of Toronto

CSC301: Introduction to Software Engineering

Adapter Pattern
 Two adapter patterns:

̶ Class adapter:
• Uses multiple inheritance to adapt one interface to another

̶ Object adapter:
• Uses single inheritance and delegation

 Object adapters are much more frequent. We will only
cover object adapters (and call them therefore simply
adapters)

University of Toronto

Pattern: bridge

University of Toronto

CSC301: Introduction to Software Engineering

Bridge Pattern
 Use a bridge to “decouple an abstraction from its

implementation so that the two can vary independently”.

 Also know as a Handle/Body pattern.

 Allows different implementations of an interface to be
decided upon dynamically.

University of Toronto

CSC301: Introduction to Software Engineering

Using a Bridge
 The bridge pattern is used to provide multiple

implementations under the same interface.
 Examples: Interface to a component that is incomplete,

not yet known or unavailable during testing
 JAMES Project: if seat data is required to be read, but

the seat is not yet implemented, known, or only available
by a simulation, provide a bridge:

VIP

Seat
(in Vehicle Subsystem) SeatImplementation

Stub Code SARTSeatAIMSeat

imp

GetPosition()
SetPosition()

University of Toronto

CSC301: Introduction to Software Engineering

Seat Implementation
public interface SeatImplementation {
public int GetPosition();
public void SetPosition(int newPosition);

}
public class Stubcode implements SeatImplementation {
public int GetPosition() {
// stub code for GetPosition

}
...

}
public class AimSeat implements SeatImplementation {
public int GetPosition() {
// actual call to the AIM simulation system

}
….

}
public class SARTSeat implements SeatImplementation {
public int GetPosition() {
// actual call to the SART seat simulator}...}

University of Toronto

CSC301: Introduction to Software Engineering

Bridge Pattern

University of Toronto

CSC301: Introduction to Software Engineering

Adapter vs Bridge
 Similarities:

̶ Both are used to hide the details of the underlying implementation.

 Difference:
̶ The adapter pattern is geared towards making unrelated components

work together
• Applied to systems after they’re designed (reengineering, interface

engineering).
̶ A bridge, on the other hand, is used up-front in a design to let

abstractions and implementations vary independently.
• New “beasts” can be added to the “object zoo”, even if these are

not known at analysis or system design time.

University of Toronto

Pattern: facade

University of Toronto

CSC301: Introduction to Software Engineering

Subsystem 2

First: what are subsystems ?
 A collection of related classes are grouped together in a

conceptual entity we call subsystem

 A software consists of subsystems where every
subsystem consist of classes.

Subsystem 1
Subsystem 3

Subsystem 2

Subsystem 2.1

University of Toronto

CSC301: Introduction to Software Engineering

Facade Pattern
 Provides a unified interface to a set of objects in a

subsystem.
 A facade defines a higher-level interface that makes the

subsystem easier to use (i.e. it abstracts out the gory
details)

 Facades allow us to provide a closed architecture

University of Toronto

CSC301: Introduction to Software Engineering

Design Example
 Subsystem 1 can look into the

Subsystem 2 (vehicle subsystem)
and call on any component or class
operation at will.

 This is “Ravioli Design”
 Why is this good?

̶ Efficiency
 Why is this bad?

̶ Can’t expect the caller to
understand how the subsystem
works or the complex relationships
within the subsystem.

̶ We can be assured that the
subsystem will be misused, leading
to non-portable code

Subsystem 2

Subsystem 1

AIM

Card

SA/RT

Seat

University of Toronto

CSC301: Introduction to Software Engineering

Realizing an Opaque Architecture with a
Facade
 The subsystem decides

exactly how it is
accessed.

 No need to worry about
misuse by callers

 If a façade is used the
subsystem can be used
in an early integration test
̶ We need to write only a

driver

VIP Subsystem

AIM

Card

SA/RT

Seat

Vehicle Subsystem API

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns: discussion
 Not just about object-oriented design

̶ User interface patterns
̶ Business patterns
̶ Anti-patterns (things to avoid)

 Be careful, not every coding problem is a design
pattern

	CSC301: Introduction to �Software Engineering��Lecture 3
	Object Oriented Design: design patterns
	Design Patterns Types
	Design Patterns Types
	Design Patterns Types
	Pattern: proxy
	Proxy Pattern: Motivation
	Proxy Pattern
	Proxy pattern
	Proxy Applicability
	Virtual Proxy example
	Before
	Controlling Access
	After
	Pattern: strategy
	Strategy Pattern
	Strategy Pattern
	Applying a Strategy Pattern in a Database Application
	Applicability of Strategy Pattern
	Pattern: abstract factory
	Abstract Factory Motivation�
	Abstract Factory�
	Applicability for Abstract Factory Pattern
	 A Facility Management System for the Intelligent Workplace
	Pattern: builder
	Builder Pattern Motivation
	Builder Pattern
	Example
	When do you use the Builder Pattern?
	Comparison: Abstract Factory vs Builder
	Pattern: adapter
	Adapter pattern
	Adapter Pattern
	Adapter Pattern
	Pattern: bridge
	Bridge Pattern
	Using a Bridge
	Seat Implementation
	Bridge Pattern
	Adapter vs Bridge
	Pattern: facade
	First: what are subsystems ?
	Facade Pattern
	Design Example
	Realizing an Opaque Architecture with a Facade
	Design Patterns: discussion

