
University of Toronto

CSC301: Introduction to
Software Engineering

Lecture 3

Wael Aboulsaadat

University of Toronto

CSC301: Introduction to Software Engineering

Object Oriented Design: design patterns

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

 Creational Patterns
̶ Focus: Creation of complex objects
̶ Here we our goal is to provide a simple abstraction for a complex

instantiation process.
̶ We want to make the system independent from the way its objects

are created, composed and represented.
̶ Problems solved:

• Hide how complex objects are created and put together

Creational

Factory Method
Abstract Factory
Builder
Prototype
 Singleton

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

 Structural Patterns
̶ Focus: How objects are composed to form larger structures
̶ They reduce the coupling between two or more classes
̶ They introduce an abstract class to enable future extensions
̶ They encapsulate complex structures
̶ Problems solved:

• Realize new functionality from old functionality,
• Provide flexibility and extensibility

Structural

Adapter
Bridge
 Composite
Decorator
Flyweight
Facade
Proxy

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns Types

 Behavioral Patterns
̶ Focus: Algorithms and the assignment of responsibilities to objects
̶ Here we are concerned with algorithms and the assignment of

responsibilies between objects: Who does what?
̶ Behavioral patterns allow us to characterize complex control flows

that are difficult to follow at runtime.
̶ Problem solved:

• Too tight coupling to a particular algorithm

Behavioural

Interpreter
 Template Method
Chain of Responsibility
 Command
Iterator
Mediator
Memento
 Observer
State
Strategy
Visitor

University of Toronto

Pattern: proxy

University of Toronto

CSC301: Introduction to Software Engineering

Proxy Pattern: Motivation

 15:00pm: prime web time. Users with 14.4 baud
modem connection can not access web pages
with a lot of graphics – their browser times out.

 Which pattern help in this scenario?

University of Toronto

CSC301: Introduction to Software Engineering

Proxy Pattern

 What is expensive?
̶ Object download
̶ Object Creation
̶ Object Initialization

 Defer to the time you need the object
 Proxy pattern:

̶ Reduces the cost of accessing objects
̶ Uses another object (“the proxy”) that acts as a stand-in

for the real object
̶ The proxy creates the real object only if the user asks for it

University of Toronto

CSC301: Introduction to Software Engineering

Proxy pattern

 Interface inheritance is used to specify the interface shared
by Proxy and RealSubject.

 Delegation is used to catch and forward any accesses to the
RealSubject (if desired)

 Proxy patterns can be used for lazy evaluation and for
remote invocation.

 Proxy patterns can be implemented with a Java interface.

Subject

Request()

RealSubject

Request()

Proxy

Request()

realSubject

University of Toronto

CSC301: Introduction to Software Engineering

Proxy Applicability
 Remote Proxy

̶ Local representative for an object in a different address space
̶ Caching of information: Good if information does not change too

often

 Virtual Proxy
̶ Object is too expensive to create or too expensive to download

 Protection Proxy
̶ Proxy provides access control to the real object
̶ Useful when different objects should have different access and

viewing rights for the same document.
̶ Example: Grade information for a student shared by

administrators, teachers and students.

University of Toronto

CSC301: Introduction to Software Engineering

Virtual Proxy example

 Images are stored and loaded separately from text
 If a RealImage is not loaded a ProxyImage displays a

grey rectangle in place of the image
 The client cannot tell that it is dealing with a ProxyImage

instead of a RealImage

Image
boundingBox()

draw()

realSubject RealImage
boundingBox()

draw()

ProxyImage
boundingBox()

draw()

University of Toronto

CSC301: Introduction to Software Engineering

Before

University of Toronto

CSC301: Introduction to Software Engineering

Controlling Access

University of Toronto

CSC301: Introduction to Software Engineering

After

University of Toronto

Pattern: strategy

University of Toronto

CSC301: Introduction to Software Engineering

Strategy Pattern
 Many different algorithms exists for the same task
 Examples:

̶ Breaking a stream of text into lines
̶ Parsing a set of tokens into an abstract syntax tree
̶ Sorting a list of customers

 The different algorithms will be appropriate at different
times
̶ Rapid prototyping vs delivery of final product

 We don’t want to support all the algorithms if we don’t
need them

 If we need a new algorithm, we want to add it easily
without disturbing the application using the algorithm

University of Toronto

CSC301: Introduction to Software Engineering

Strategy Pattern

Strategy
AlgorithmInterface

Context

ContextInterface()

ConcreteStrategyC

AlgorithmInterface()

*

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

Policy

Policy decides which Strategy is best given the current Context

University of Toronto

CSC301: Introduction to Software Engineering

Applying a Strategy Pattern in a Database
Application

Strategy
Sort()

Database

Search()
Sort()

Strategy *

BubbleSort

Sort()

QuickSort

Sort()

MergeSort

Sort()

University of Toronto

CSC301: Introduction to Software Engineering

Applicability of Strategy Pattern

 Many related classes differ only in their
behavior. Strategy allows to configure a single
class with one of many behaviors

 Different variants of an algorithm are needed
that trade-off space against time. All these
variants can be implemented as a class
hierarchy of algorithms

University of Toronto

Pattern: abstract factory

University of Toronto

CSC301: Introduction to Software Engineering

Abstract Factory Motivation
 2 Examples…
 Consider a user interface toolkit that supports multiple

looks and feel standards such as Motif, Windows 95 or
the finder in MacOS.
̶ How can you write a single user interface and make it portable

across the different look and feel standards for these window
managers?

 Consider a facility management system for an intelligent
house that supports different control systems such as
Siemens’ Instabus, Johnson & Control Metasys or
Zumtobe’s proprietary standard.
̶ How can you write a single control system that is independent

from the manufacturer?

University of Toronto

CSC301: Introduction to Software Engineering

Abstract Factory
AbstractFactory

CreateProductA
CreateProductB

CreateProductA
CreateProductB

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

ConcreteFactory
1

CreateProductA
CreateProductB

ConcreteFactory
2

Client

Initiation Assocation:
Class ConcreteFactory2 initiates the

associated classes ProductB2 and ProductA2

University of Toronto

CSC301: Introduction to Software Engineering

Applicability for Abstract Factory Pattern
 Independence from Initialization or Representation:

̶ The system should be independent of how its products are created,
composed or represented

 Manufacturer Independence:
̶ A system should be configured with one family of products, where one

has a choice from many different families.
̶ You want to provide a class library for a customer (“facility management

library”), but you don’t want to reveal what particular product you are
using.

 Constraints on related products
̶ A family of related products is designed to be used together and you

need to enforce this constraint
 Cope with upcoming change:

̶ You use one particular product family, but you expect that the underlying
technology is changing very soon, and new products will appear on the
market.

University of Toronto

CSC301: Introduction to Software Engineering

A Facility Management System for the Intelligent Workplace
IntelligentWorkplace

InitLightSystem
InitBlindSystem
InitACSystem

InitLightSystem
InitBlindSystem
InitACSystem

LightBulb

InstabusLight
Controller

ZumbobelLight
Controller

Blinds

InstabusBlind
Controller

ZumtobelBlind
Controller

SiemensFactory

InitLightSystem
InitBlindsystem
InitACSystem

ZumtobelFactor
y

Facility
Mgt

System

University of Toronto

Pattern: builder

University of Toronto

CSC301: Introduction to Software Engineering

Builder Pattern Motivation
 Conversion of documents
 Software companies make their money by introducing

new formats, forcing users to upgrades
̶ But you don’t want to upgrade your software every time there is

an update of the format for Word documents

 Idea: A reader for RTF format
̶ Convert RTF to many text formats (EMACS, Framemaker 4.0,

Framemaker 5.0, Framemaker 5.5, HTML, SGML, WordPerfect
3.5, WordPerfect 7.0, ….)

• Problem: The number of conversions is open-ended.

 Solution
̶ Configure the RTF Reader with a “builder” object that specializes

in conversions to any known format and can easily be extended
to deal with any new format appearing on the market

University of Toronto

CSC301: Introduction to Software Engineering

Builder Pattern

Construct()
Director

For all objects in Structure {
Builder->BuildPart()

}

BuildPart()
Builder

BuildPart()
GetResult()

ConcreteBuilderB Represen-
tation B

BuildPart()
GetResult()

ConcreteBuilder
A

Represen-
tation A

University of Toronto

CSC301: Introduction to Software Engineering

Example

Parse()
RTFReader

While (t = GetNextToken()) {
Switch t.Type {

CHAR: builder->ConvertCharacter(t.Char)
FONT: bulder->ConvertFont(t.Font)
PARA: builder->ConvertParagraph

}
}

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

TextConverter

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

GetASCIIText()

AsciiConverter

AsciiText

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

GetASCIIText()

TexConverter

TeXText

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

GetASCIIText()

HTMLConverter

HTMLText

University of Toronto

CSC301: Introduction to Software Engineering

When do you use the Builder Pattern?
 The creation of a complex product must be independent

of the particular parts that make up the product
̶ In particular, the creation process should not know about the

assembly process (how the parts are put together to make up
the product)

 The creation process must allow different
representations for the object that is constructed.
Examples:
̶ A house with one floor, 3 rooms, 2 hallways, 1 garage and three

doors.
̶ A skyscraper with 50 floors, 15 offices and 5 hallways on each

floor. The office layout varies for each floor.

University of Toronto

CSC301: Introduction to Software Engineering

Comparison: Abstract Factory vs Builder
 Abstract Factory

̶ Focuses on product family
• The products can be simple (“light bulb”) or complex (“engine”)

̶ Does not hide the creation process
• The product is immediately returned

 Builder
̶ The underlying product needs to be constructed as part of the

system, but the creation is very complex
̶ The construction of the complex product changes from time to time
̶ The builder patterns hides the creation process from the user:

• The product is returned after creation as a final step

University of Toronto

Pattern: adapter

University of Toronto

CSC301: Introduction to Software Engineering

 Delegation is used to
bind an Adapter and an Adaptee

 Interface inheritance is use to specify the interface of the Adapter
class.

 Target and Adaptee (usually called legacy system) pre-exist the
Adapter.

 Target may be realized as an interface in Java.

Adapter pattern

Client
ClientInterface

Request()

LegacyClass

ExistingRequest()

Adapter

Request()

adaptee

University of Toronto

CSC301: Introduction to Software Engineering

Adapter Pattern
 “Convert the interface of a class into another interface

clients expect.”

 The adapter pattern lets classes work together that
couldn’t otherwise because of incompatible interfaces

 Used to provide a new interface to existing legacy
components (Interface engineering, reengineering).

 Also known as a wrapper

University of Toronto

CSC301: Introduction to Software Engineering

Adapter Pattern
 Two adapter patterns:

̶ Class adapter:
• Uses multiple inheritance to adapt one interface to another

̶ Object adapter:
• Uses single inheritance and delegation

 Object adapters are much more frequent. We will only
cover object adapters (and call them therefore simply
adapters)

University of Toronto

Pattern: bridge

University of Toronto

CSC301: Introduction to Software Engineering

Bridge Pattern
 Use a bridge to “decouple an abstraction from its

implementation so that the two can vary independently”.

 Also know as a Handle/Body pattern.

 Allows different implementations of an interface to be
decided upon dynamically.

University of Toronto

CSC301: Introduction to Software Engineering

Using a Bridge
 The bridge pattern is used to provide multiple

implementations under the same interface.
 Examples: Interface to a component that is incomplete,

not yet known or unavailable during testing
 JAMES Project: if seat data is required to be read, but

the seat is not yet implemented, known, or only available
by a simulation, provide a bridge:

VIP

Seat
(in Vehicle Subsystem) SeatImplementation

Stub Code SARTSeatAIMSeat

imp

GetPosition()
SetPosition()

University of Toronto

CSC301: Introduction to Software Engineering

Seat Implementation
public interface SeatImplementation {
public int GetPosition();
public void SetPosition(int newPosition);

}
public class Stubcode implements SeatImplementation {
public int GetPosition() {
// stub code for GetPosition

}
...

}
public class AimSeat implements SeatImplementation {
public int GetPosition() {
// actual call to the AIM simulation system

}
….

}
public class SARTSeat implements SeatImplementation {
public int GetPosition() {
// actual call to the SART seat simulator}...}

University of Toronto

CSC301: Introduction to Software Engineering

Bridge Pattern

University of Toronto

CSC301: Introduction to Software Engineering

Adapter vs Bridge
 Similarities:

̶ Both are used to hide the details of the underlying implementation.

 Difference:
̶ The adapter pattern is geared towards making unrelated components

work together
• Applied to systems after they’re designed (reengineering, interface

engineering).
̶ A bridge, on the other hand, is used up-front in a design to let

abstractions and implementations vary independently.
• New “beasts” can be added to the “object zoo”, even if these are

not known at analysis or system design time.

University of Toronto

Pattern: facade

University of Toronto

CSC301: Introduction to Software Engineering

Subsystem 2

First: what are subsystems ?
 A collection of related classes are grouped together in a

conceptual entity we call subsystem

 A software consists of subsystems where every
subsystem consist of classes.

Subsystem 1
Subsystem 3

Subsystem 2

Subsystem 2.1

University of Toronto

CSC301: Introduction to Software Engineering

Facade Pattern
 Provides a unified interface to a set of objects in a

subsystem.
 A facade defines a higher-level interface that makes the

subsystem easier to use (i.e. it abstracts out the gory
details)

 Facades allow us to provide a closed architecture

University of Toronto

CSC301: Introduction to Software Engineering

Design Example
 Subsystem 1 can look into the

Subsystem 2 (vehicle subsystem)
and call on any component or class
operation at will.

 This is “Ravioli Design”
 Why is this good?

̶ Efficiency
 Why is this bad?

̶ Can’t expect the caller to
understand how the subsystem
works or the complex relationships
within the subsystem.

̶ We can be assured that the
subsystem will be misused, leading
to non-portable code

Subsystem 2

Subsystem 1

AIM

Card

SA/RT

Seat

University of Toronto

CSC301: Introduction to Software Engineering

Realizing an Opaque Architecture with a
Facade
 The subsystem decides

exactly how it is
accessed.

 No need to worry about
misuse by callers

 If a façade is used the
subsystem can be used
in an early integration test
̶ We need to write only a

driver

VIP Subsystem

AIM

Card

SA/RT

Seat

Vehicle Subsystem API

University of Toronto

CSC301: Introduction to Software Engineering

Design Patterns: discussion
 Not just about object-oriented design

̶ User interface patterns
̶ Business patterns
̶ Anti-patterns (things to avoid)

 Be careful, not every coding problem is a design
pattern

	CSC301: Introduction to �Software Engineering��Lecture 3
	Object Oriented Design: design patterns
	Design Patterns Types
	Design Patterns Types
	Design Patterns Types
	Pattern: proxy
	Proxy Pattern: Motivation
	Proxy Pattern
	Proxy pattern
	Proxy Applicability
	Virtual Proxy example
	Before
	Controlling Access
	After
	Pattern: strategy
	Strategy Pattern
	Strategy Pattern
	Applying a Strategy Pattern in a Database Application
	Applicability of Strategy Pattern
	Pattern: abstract factory
	Abstract Factory Motivation�
	Abstract Factory�
	Applicability for Abstract Factory Pattern
	 A Facility Management System for the Intelligent Workplace
	Pattern: builder
	Builder Pattern Motivation
	Builder Pattern
	Example
	When do you use the Builder Pattern?
	Comparison: Abstract Factory vs Builder
	Pattern: adapter
	Adapter pattern
	Adapter Pattern
	Adapter Pattern
	Pattern: bridge
	Bridge Pattern
	Using a Bridge
	Seat Implementation
	Bridge Pattern
	Adapter vs Bridge
	Pattern: facade
	First: what are subsystems ?
	Facade Pattern
	Design Example
	Realizing an Opaque Architecture with a Facade
	Design Patterns: discussion

