
University of Toronto

CSC301: Introduction to
Software Engineering

Lecture 4

Wael Aboulsaadat

University of Toronto

Introduction to
Software Development Lifecycle

SDLC

University of Toronto

CSC301: Introduction to Software Engineering

The Software Crisis: why?

 Monolithic development is not effective for
modern system development.
̶ No process control
̶ No product or process guarantees
̶ No true management
̶ No client confidence
̶ No process visibility / traceability
̶ No metrication
̶ No communication
=> no quality!

University of Toronto

CSC301: Introduction to Software Engineering

Breaking the Monolithic Model

 Done by introducing “steps” into the software
development process.

 Steps in the development process are called
“phases” (or “stages”).

 Phases must be self contained and pre-defined.
 Phases should decrease abstraction as they

progress.

University of Toronto

CSC301: Introduction to Software Engineering

Installation

Typical Phases in Software Development

Requirements

Analysis

Feasibility

Design

Implementation

Testing

Maintenance

Retirement

Statement
Elicitation

Strategy planning

Feasibility study

Detailed
System

Integration
Component

Support
Operations

Detailed
System

University of Toronto

CSC301: Introduction to Software Engineering

University of Toronto

CSC301: Introduction to Software Engineering

A Software Development Phase

A software development phase:
 is a delimited period of time within the process of

development of a software system.
 has a definite starting set of data and a definite

set of results.
 is based on the results set of earlier phases.

University of Toronto

CSC301: Introduction to Software Engineering

Some Advantages of Phased Development

 Phased development
̶ Offers benchmarking
̶ Offers insight
̶ Offers mile-stoning niches
̶ Offers a documentation-building framework
̶ Offers a definite progression sequence
̶ Offers possibilities for prototyping
̶ Allows end-user and client participation
̶ Offers possibilities for better testing strategies

University of Toronto

CSC301: Introduction to Software Engineering

A Development Milestone

 A software development milestone is a
scheduled event…
̶ for which some project member or manager is

accountable.
̶ is used to measure progress.

 A milestone typically includes:
̶ a formal review.
̶ the issuance of documents.
̶ the delivery of a (sometimes intermediate) product.

University of Toronto

CSC301: Introduction to Software Engineering

Development Models
 Development model definition:

̶ A particular interaction configuration of development
phases leading to a final software product.

University of Toronto

CSC301: Introduction to Software Engineering

Life Cycle
 A life-cycle…

̶ is a finite and definite period of time.
̶ starts when a software product is conceived.
̶ ends when the product is no longer available or

effective for use.
 Any life-cycle is organised in (composed of)

phases

University of Toronto

CSC301: Introduction to Software Engineering

The Development Life-Cycle

(aka The Software Development Process)

 A project is a set of activities, interactions and
results.

 A life-cycle or a software process is the
organisational framework for a project.

University of Toronto

CSC301: Introduction to Software Engineering

The Nature of an Effective Development
Model (DM)
An effective DM is one that:
 Effectively links the phases it includes
 Focuses phases towards a definite goal
 Provides mechanisms for the controlled

decrease of system abstraction
 Includes definite milestones
 Is transparent
 Is traceable between adjacent phases

University of Toronto

Code-and-Fix model!

University of Toronto

CSC301: Introduction to Software Engineering

Code-and-Fix Model
 No design
 No

specifications
̶ Maintenance

nightmare

 The easiest way
to develop
software

 The most
expensive way

 Typically used
by a start-up…

Implement the 1st

Version

Modify until
client is satisfied

Postdelivery
Maintenance

Maintenance

Development

University of Toronto

Waterfall Model

University of Toronto

CSC301: Introduction to Software Engineering

Waterfall model: Linear & Sequential

University of Toronto

CSC301: Introduction to Software Engineering

Traditional Artifacts

Needs Analysis &
Concept Definition

Requirements
Specification

Design

Implementation

Integration & Test

Mission Statement

Requirements
Documentation

Design
Specification

Code

Test Plans,
Procedures,
& Results

University of Toronto

CSC301: Introduction to Software Engineering

Verification Techniques

User Interviews/
Requirements Tracing

Design Reviews

Code Inspections/
Static Analysis

Structural &
Functional Testing

Problem
Report Analysis

Needs Analysis &
Concept Definition

Requirements
Specification

Design

Implementation

Integration & Test

Operation &
Maintenance

Retirement

Needs Analysis &
Concept Definition

Requirements
Specification

Design

Implementation

Integration & Test

Operation &
Maintenance

Retirement

Needs Analysis &
Concept Definition

Requirements
Specification

Design

Implementation

Integration & Test

Operation &
Maintenance

Retirement

University of Toronto

CSC301: Introduction to Software Engineering

Waterfall Model Drawbacks

 sequential nature
 late tangible product maturity

̶ late feedback
to both customer and developer

̶ minimal risk management
for both customer and developer

 late testing maturity

University of Toronto

CSC301: Introduction to Software Engineering

Pros and Cons of the Waterfall Method
Pros Cons

1. Simple and easy to use.
2. Easy to manage due to

the rigidity of the model
– each phase has
specific deliverables and
a review process.

3. Phases are processed
and completed one at a
time.

4. Works well for smaller
projects where
requirements are very
well understood.

1. Adjusting scope during the
life cycle can kill a project

2. No working software is
produced until late during
the life cycle.

3. High amounts of risk and
uncertainty.

4. Poor model for long and
ongoing projects.

5. Poor model where
requirements are at a
moderate to high risk of
changing

University of Toronto

CSC301: Introduction to Software Engineering

Winburg Case Study – The Real World Is Different
 Episode 1: The first version is implemented

 Episode 2: A fault is found
̶ The product is too slow because of an implementation fault

 Episode 3: The requirements change
̶ A faster algorithm is used

 Episode 4: A new design is adopted
̶ Development is complete

 Epilogue: A few years later, these problems recur

University of Toronto

CSC301: Introduction to Software Engineering

Moving Target Problem!!...
 Even if the reasons for the change are good, the software product can be

adversely impacted
̶ Dependencies will be induced

 Any change made to a software product can potentially cause a
regression fault
̶ A fault in an apparently unrelated part of the software

 If there are too many changes
̶ The entire product may have to be redesigned and re-implemented

 Change is inevitable
̶ Growing companies are always going to change
̶ If the individual calling for changes has sufficient clout, nothing can be

done about it

 There is no solution to the moving target problem

University of Toronto

Rapid Prototyping

University of Toronto

CSC301: Introduction to Software Engineering

Rapid Prototyping + Waterfall

Update
Requirements

Choose
Functionality

Build
Prototype

Initial
Requirements

Write
Specification

Create
Software

Write
Test Plan

University of Toronto

CSC301: Introduction to Software Engineering

Rapid Prototyping Model
 Linear model

 “Rapid”

University of Toronto

CSC301: Introduction to Software Engineering

Motivation behind Rapid Prototype Model

 Increases likelihood that customers and developers are
on the same page at time t0

 At t1 (>t0) the delivered function is higher for the rapid
prototyping approa

 Shows overall, that function is closer to needs than the
waterfall model

University of Toronto

CSC301: Introduction to Software Engineering

The Rapid Prototyping Model

 Goal: explore requirements
̶ Without building the complete product

 Start with part of the functionality
̶ That will (hopefully) yield significant insight

 Build a prototype
̶ Focus on core functionality, not in efficiency

 Use the prototype to refine the requirements
 Repeat the process, expanding functionality

University of Toronto

CSC301: Introduction to Software Engineering

What is Prototyping?

 A definition (A. Davis):
A prototype is a partial implementation of a system,
constructed primarily to enable customer, end-user,
or developer to learn about the problem and/or its
solution.

 Types:
̶ evolutionary / throw-away
̶ horizontal / vertical

University of Toronto

CSC301: Introduction to Software Engineering

The (Rapid) Prototyping Model

 Goals:
̶ to break away from the sequential nature.
̶ to speed up feedback.
̶ to minimise risks

for both customer and developer
̶ to be incomplete but executable.
̶ to be cheap and fast.

University of Toronto

CSC301: Introduction to Software Engineering

Horizontal Prototyping

func. 1 func. n
abstract

physical

University of Toronto

CSC301: Introduction to Software Engineering

Vertical Prototyping

func. 1 func. n
abstract

physical

University of Toronto

CSC301: Introduction to Software Engineering

Decision

Throwaway Prototyping Model

Requirements
specification

Some minimal
development

The
prototype

Discard
prototype

not acceptable acceptable

Go on with
normal system
development

University of Toronto

CSC301: Introduction to Software Engineering

A Visual Representation of The
Evolutionary Prototyping Model

Requirements
specification

Some initial
development

Prototype
version 1

Some more
development

Prototype
version 2

etc.

Continue till
prototype is

matured

University of Toronto

CSC301: Introduction to Software Engineering

Analysis of The Prototyping Model

 Improves:
̶ breaks the sequential nature.
̶ supports fast feedback.
̶ offers an opportunity for risk management.

 Problems:
̶ has no definite (i.e. strictly defined) organisational

structure.

University of Toronto

V-Model

University of Toronto

CSC301: Introduction to Software Engineering

The V-Model

Requirements

System Design

Detailed Design

Implementation

Acceptance Test

Integration Test

Module Test

University of Toronto

CSC301: Introduction to Software Engineering

Analysis of the V-Model

 Improves testing strategies
 Does not particularly improve:

̶ sequential nature
̶ feedback
̶ developmental risk management

University of Toronto

CSC301: Introduction to Software Engineering

Miller’s Law
 At any one time, we can concentrate on only

approximately seven chunks (units of information)

 To handle larger amounts of information, use
stepwise refinement
̶ Concentrate on the aspects that are currently the most

important
̶ Postpone aspects that are currently less critical
̶ Every aspect is eventually handled, but in order of current

importance

 This is an incremental process

University of Toronto

Incremental Model

University of Toronto

CSC301: Introduction to Software Engineering

Testing

Implementation

The Incremental Model

Requirements

Global System Design

Maintenance

Detailed design

Testing

Implementation

Detailed design

Testing

Implementation

Detailed design

University of Toronto

CSC301: Introduction to Software Engineering

Motivation behind Incremental Model

 Deliberately built to satisfy fewer requirements initially, but
facilitates incorporation of new requirements which increases
adaptability

 Initial development time is reduced because of limited
functionality

 Software can be enhanced more easily for a longer period of
time

 Stair steps show series of well-defined, planned, discrete
builds of the system

University of Toronto

CSC301: Introduction to Software Engineering

Analysis of The Incremental Model

 Assumes independent sub-systems.
 Improves (by delivering smaller units):

̶ feedback (in steps)
̶ testing

 Avoids the production of a monolithic product.
 Does not particularly improve:

̶ developmental risk management
̶ Sequential nature (still present in sub-systems)

University of Toronto

CSC301: Introduction to Software Engineering

Incremental Model Strengths

 Develop high-risk or major functions first
 Each release delivers an operational product
 Customer can respond to each build
 Uses “divide and conquer” breakdown of tasks
 Lowers initial delivery cost
 Initial product delivery is faster
 Customers get important functionality early
 Risk of changing requirements is reduced

University of Toronto

CSC301: Introduction to Software Engineering

Incremental Model Weaknesses
 Still requires good planning and design..
 Requires early definition of a complete and fully

functional system to allow for the definition of
increments

 Well-defined module interfaces are required
(some will be developed long before others)

 Total cost of the complete system is not lower

University of Toronto

CSC301: Introduction to Software Engineering

When to use the Incremental Model
 Risk, funding, schedule, program complexity, or

need for early realization of benefits.
 Most of the requirements are known up-front but

are expected to evolve over time
 A need to get basic functionality to the market

early
 On projects which have lengthy development

schedules
 On a project with new technology

University of Toronto

Agile Model

University of Toronto

CSC301: Introduction to Software Engineering

Agile SDLC
 Somewhat controversial new approach…

 A collection of new paradigms characterized by
̶ Less emphasis on analysis and design
̶ Earlier implementation (working software is

considered more important than documentation)
̶ Responsiveness to change
̶ Close collaboration with the client

University of Toronto

CSC301: Introduction to Software Engineering

Agile SDLC – cont’d

 Speed up or bypass one or more life cycle phases

 Usually less formal and reduced scope

 Used for time-critical applications

University of Toronto

CSC301: Introduction to Software Engineering

Manifesto for
Agile Software Development

 Individuals and interactions over processes and
tools

 Working software over comprehensive
documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

University of Toronto

CSC301: Introduction to Software Engineering

Some Agile Methods
 Adaptive Software Development (ASD)
 Feature Driven Development (FDD)
 Crystal Clear
 Dynamic Software Development Method

(DSDM)
 Rapid Application Development (RAD)
 Scrum
 Extreme Programming (XP)
 Rational Unify Process (RUP)

University of Toronto

CSC301: Introduction to Software Engineering

Extreme Programming - XP
 For small-to-medium-sized teams developing

software with vague or rapidly changing
requirements

 Coding is the key activity throughout a software
project

 Communication among teammates is done with
code

 Life cycle and behavior of complex objects defined
in test cases – again in code

University of Toronto

CSC301: Introduction to Software Engineering

XP Practices (1-6)
1. Planning game – determine scope of the next release

by combining business priorities and technical
estimates

2. Small releases – put a simple system into production,
then release new versions in very short cycle

3. Metaphor – all development is guided by a simple
shared story of how the whole system works

4. Simple design – system is designed as simply as
possible (extra complexity removed as soon as found)

5. Testing – programmers continuously write unit tests;
customers write tests for features

6. Refactoring – programmers continuously restructure
the system without changing its behavior to remove
duplication and simplify

University of Toronto

CSC301: Introduction to Software Engineering

XP Practices (7 – 12)
7. Pair-programming -- all production code is written with

two programmers at one machine
8. Collective ownership – anyone can change any code

anywhere in the system at any time.
9. Continuous integration – integrate and build the

system many times a day – every time a task is
completed.

10. 40-hour week – work no more than 40 hours a week
as a rule

11. On-site customer – a user is on the team and available
full-time to answer questions

12. Coding standards – programmers write all code in
accordance with rules emphasizing communication
through the code

University of Toronto

CSC301: Introduction to Software Engineering

XP is “extreme” because
Commonsense practices taken to extreme levels

 If code reviews are good, review code all the time (pair
programming)

 If testing is good, everybody will test all the time
 If simplicity is good, keep the system in the simplest design

that supports its current functionality. (simplest thing that
works)

 If design is good, everybody will design daily (refactoring)
 If architecture is important, everybody will work at defining

and refining the architecture (metaphor)
 If integration testing is important, build and integrate test

several times a day (continuous integration)
 If short iterations are good, make iterations really, really short

(hours rather than weeks)

University of Toronto

CSC301: Introduction to Software Engineering

Unusual Features of XP
 The computers are put in the center of a large room lined

with cubicles

 A client representative is always present

 Software professionals cannot work overtime for 2
successive weeks

 No specialization

 Refactoring (design modification)

University of Toronto

CSC301: Introduction to Software Engineering

Evaluating Agile Processes and XP
 XP has had some successes with small-scale software

development
̶ However, medium- and large-scale software development is very

different

 The key decider: the impact of agile processes on
postdelivery maintenance
̶ Refactoring is an essential component of agile processes
̶ Refactoring continues during maintenance
̶ Will refactoring increase the cost of post-delivery maintenance, as

indicated by preliminary research?

University of Toronto

CSC301: Introduction to Software Engineering

Evaluating Agile Processes and XP (contd)

 Agile processes are good when requirements are vague or
changing

 It is too soon to evaluate agile processes
̶ There are not enough data yet

 Even if agile processes prove to be disappointing
̶ Some features (such as pair programming) may be adopted as mainstream

software engineering practices

	CSC301: Introduction to �Software Engineering��Lecture 4
	Introduction to �Software Development Lifecycle�SDLC
	The Software Crisis: why?
	Breaking the Monolithic Model
	Typical Phases in Software Development
	Slide Number 6
	A Software Development Phase
	Some Advantages of Phased Development
	A Development Milestone
	Development Models
	Life Cycle�
	The Development Life-Cycle
	The Nature of an Effective Development Model (DM)
	Code-and-Fix model!
	Code-and-Fix Model
	Waterfall Model
	Waterfall model: Linear & Sequential
	Traditional Artifacts
	Verification Techniques
	Waterfall Model Drawbacks
	Pros and Cons of the Waterfall Method
	Winburg Case Study – The Real World Is Different
	Moving Target Problem!!...
	Rapid Prototyping
	Rapid Prototyping + Waterfall
	Rapid Prototyping Model
	Motivation behind Rapid Prototype Model
	The Rapid Prototyping Model
	What is Prototyping?
	The (Rapid) Prototyping Model
	Horizontal Prototyping
	Vertical Prototyping
	�Throwaway Prototyping Model
	A Visual Representation of The Evolutionary Prototyping Model
	Analysis of The Prototyping Model
	V-Model
	The V-Model
	Analysis of the V-Model
	Miller’s Law
	Incremental Model
	The Incremental Model
	Motivation behind Incremental Model
	Analysis of The Incremental Model
	Incremental Model Strengths
	Incremental Model Weaknesses
	When to use the Incremental Model
	Agile Model
	Agile SDLC
	Agile SDLC – cont’d
	Manifesto for �Agile Software Development
	Some Agile Methods
	Extreme Programming - XP
	XP Practices (1-6)
	XP Practices (7 – 12)
	XP is “extreme” because
	Unusual Features of XP
	Evaluating Agile Processes and XP
	Evaluating Agile Processes and XP (contd)

