
University of Toronto 0

CSC301: Introduction to
Software Engineering

Lecture 5

Wael Aboulsaadat

University of Toronto 1

Software Development Lifecycle
SDLC

University of Toronto 2

CSC301: Introduction to Software Engineering

Code-and-Fix Model
 No design
 No

specifications
̶ Maintenance

nightmare

 The easiest way
to develop
software

 The most
expensive way

 Typically used
by a start-up…

Implement the 1st

Version

Modify until
client is satisfied

Postdelivery
Maintenance

Maintenance

Development

University of Toronto 3

CSC301: Introduction to Software Engineering

Waterfall model: Linear & Sequential

University of Toronto 4

CSC301: Introduction to Software Engineering

Rapid Prototyping Model
 Linear model

 “Rapid”

 Prototype

University of Toronto 5

CSC301: Introduction to Software Engineering

Horizontal Prototyping

func. 1 func. n
abstract

physical

University of Toronto 6

CSC301: Introduction to Software Engineering

Vertical Prototyping

func. 1 func. n
abstract

physical

University of Toronto 7

CSC301: Introduction to Software Engineering

The V-Model

Requirements

System Design

Detailed Design

Implementation

Acceptance Test

Integration Test

Module Test

University of Toronto 8

CSC301: Introduction to Software Engineering

Testing

Implementation

The Incremental Model

Requirements

Global System Design

Maintenance

Detailed design

Testing

Implementation

Detailed design

Testing

Implementation

Detailed design

University of Toronto 9

Spiral Model

University of Toronto 10

CSC301: Introduction to Software Engineering

Spiral Model
 Key idea

̶ Always some risk in software development
• People leave…
• Other products not delivered on time

̶ We need to minimize risk
• e.g., building prototypes & simulations minimizes risks

University of Toronto 11

CSC301: Introduction to Software Engineering

Spiral Model
 Key idea

̶ Always some risk in software development
• People leave…
• Other products not delivered on time

̶ We need to minimize risk
• e.g., building prototypes & simulations minimizes risks

 Precede each phase by
̶ looking at alternatives
̶ risk analysis

University of Toronto 12

CSC301: Introduction to Software Engineering

Spiral Model
 Key idea

̶ Always some risk in software development
• People leave…
• Other products not delivered on time

̶ We need to minimize risk
• e.g., building prototypes & simulations minimizes risks

 Precede each phase by
̶ looking at alternatives
̶ risk analysis

 Follow each phase by
̶ evaluation
̶ planning of next phase

University of Toronto 13

CSC301: Introduction to Software Engineering

The Spiral Model

1. Build what you think you need
̶ Perhaps using the waterfall model

University of Toronto 14

CSC301: Introduction to Software Engineering

The Spiral Model

1. Build what you think you need
̶ Perhaps using the waterfall model

2. Get a few users to help you debug it!!
̶ First an “alpha” release, then a “beta” release

University of Toronto 15

CSC301: Introduction to Software Engineering

The Spiral Model

1. Build what you think you need
̶ Perhaps using the waterfall model

2. Get a few users to help you debug it!!
̶ First an “alpha” release, then a “beta” release

3. Release it as a product (version 1.0)
̶ Make small changes as needed (1.1, 1.2, ….)

University of Toronto 16

CSC301: Introduction to Software Engineering

The Spiral Model

1. Build what you think you need
̶ Perhaps using the waterfall model

2. Get a few users to help you debug it!!
̶ First an “alpha” release, then a “beta” release

3. Release it as a product (version 1.0)
̶ Make small changes as needed (1.1, 1.2, ….)

4. Save big changes for a major new release
̶ Often based on a total redesign (2.0, 3.0, …)

University of Toronto 17

CSC301: Introduction to Software Engineering

The Spiral Model

University of Toronto 18

CSC301: Introduction to Software Engineering

Advantages of the Spiral Model

 Encourages prototyping

 Minimizes unnecessary elaborate specification

 Enables rework when needed

 Incorporates existing models

 Focuses on risk

University of Toronto 19

CSC301: Introduction to Software Engineering

Risk Assessment
 Risk-driven approach; in each spiral:

̶ identify potential risks
̶ plan next step based on risk analysis
̶ refine design in highest-risk areas

 Explicitly attempts to identify potential problems
̶ not just in initial stages of design
̶ also later, when more has been learned about the

problem and the design
 What are the “risky” parts of the system

̶ relies on developer experience

University of Toronto 20

CSC301: Introduction to Software Engineering

Disadvantages of the Spiral Model

 Need good risk-assessment skills!

University of Toronto 21

CSC301: Introduction to Software Engineering

Risk Assessment Example

1) How many coders you have to work on the project.

University of Toronto 22

CSC301: Introduction to Software Engineering

Risk Assessment Example

1) How many coders you have to work on the project.
2) How many days each has till due date of next

release (excluding vacations)?

University of Toronto 23

CSC301: Introduction to Software Engineering

Risk Assessment Example

1) How many coders you have to work on the project.
2) How many days each has till due date of next

release (excluding vacations)?
3) How efficient is each coder?...

University of Toronto 24

CSC301: Introduction to Software Engineering

Risk Assessment Example

1) How many coders you have to work on the project.
2) How many days each has till due date of next

release (excluding vacations)?
3) How efficient is each coder?...
4) How many features to be implemented in the

coming release?

University of Toronto 25

CSC301: Introduction to Software Engineering

Risk Assessment Example

1) How many coders you have to work on the project.
2) How many days each has till due date of next

release (excluding vacations)?
3) How efficient is each coder?...
4) How many features to be implemented in the

coming release?
5) How many days each feature will take?

University of Toronto 26

CSC301: Introduction to Software Engineering

Risk Assessment Example

1) How many coders you have to work on the project.
2) How many days each has till due date of next

release (excluding vacations)?
3) How efficient is each coder?...
4) How many features to be implemented in the

coming release?
5) How many days each feature will take?
6) What’s the probability that you finish time?!

University of Toronto 27

CSC301: Introduction to Software Engineering

Capacity

University of Toronto 28

CSC301: Introduction to Software Engineering

Requirements

University of Toronto 29

Design Patterns

University of Toronto 30

Pattern: Chain of Responsibility

University of Toronto 31

CSC301: Introduction to Software Engineering

Problem
 Calling a method tightly couples the sending and receiving objects

̶ Requires that you know what operation you want to perform, and
which object you want to perform it

 This is usually not a problem, but sometimes …
̶ You need an operation performed
̶ There are multiple objects that can perform it
̶ The object that should perform the operation changes over time

and depends on the context
̶ You might even want multiple objects to respond to the same

request

 You need a way to call a method without specifically saying which
object(s) should perform the operation

University of Toronto 32

CSC301: Introduction to Software Engineering

Solution
 Decouple sender and receiver by giving multiple objects a chance to

handle a request

 When the sender needs to perform an operation, the request is passed
along a chain of objects until one of them handles it

 The result is passed back along the chain to the sender

 The sender doesn't even know which object processed the request

 Any object that wants a chance to handle requests is added to the
chain

 You can let multiple objects handle the same request by passing it all
the way down the chain, even if somebody has already handled it

University of Toronto 33

CSC301: Introduction to Software Engineering

Solution: chain of responsibility

http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern

http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern�
http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern�
http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern�
http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern�
http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern�

University of Toronto 34

CSC301: Introduction to Software Engineering

Known Uses: UI Event Handling

 User interfaces are implemented as
composites (ie, trees) of "widgets"

University of Toronto 35

CSC301: Introduction to Software Engineering

Known Uses: UI Event Handling

 Events are handled bottom-up
 The chain of responsibility includes the

leaf-level widget where the event begins
and its ancestors

• Context-sensitive help can be handled the same way
– ProcessHelp() instead of ProcessEvent()

University of Toronto 36

Pattern: object pool

A store of objects…

University of Toronto 37

CSC301: Introduction to Software Engineering

Problem

 Object creation is expensive

 Need to track how many an application create

University of Toronto 38

CSC301: Introduction to Software Engineering

Solution: object pool!

http://sourcemaking.com/design_patterns/object_pool/java

http://sourcemaking.com/design_patterns/object_pool/java�

University of Toronto 39

Pattern: flyweight

University of Toronto 40

CSC301: Introduction to Software Engineering

Problem

 Some objects take too much memory - can’t
afford to create many instances of it if the client
code requests that…

University of Toronto 41

CSC301: Introduction to Software Engineering

Solution

http://en.wikipedia.org/wiki/Flyweight_pattern

http://en.wikipedia.org/wiki/Flyweight_pattern�

University of Toronto 42

Pattern: memento

University of Toronto 43

CSC301: Introduction to Software Engineering

Problem

 What’s the best way to save objects and
restore them to/from harddisk...?

University of Toronto 44

CSC301: Introduction to Software Engineering

Solution

 Have each class responsible for it’s saving and
loading…

http://en.wikipedia.org/wiki/Memento_pattern

http://en.wikipedia.org/wiki/Memento_pattern�

University of Toronto 45

Pattern: iterator

University of Toronto 46

CSC301: Introduction to Software Engineering

Problem

 We need a standard way to work with *all*
linear data structures, and similarly for trees,
graphs, etc…

University of Toronto 47

CSC301: Introduction to Software Engineering

Solution

 Have each data structure implements the same
interface

http://sourcemaking.com/design_patterns/iterator/java/1

http://sourcemaking.com/design_patterns/iterator/java/1�

University of Toronto 48

Pattern: prototype

University of Toronto 49

CSC301: Introduction to Software Engineering

Problem

 We need a way to create copies of object
without knowing about the internal
implementation of that object

University of Toronto 50

CSC301: Introduction to Software Engineering

Solution

 Have each class clones it self, i.e. make it
clonable

http://sourcemaking.com/design_patterns/prototype/java/1

http://sourcemaking.com/design_patterns/prototype/java/1�

University of Toronto 51

Design Patterns: a quick overview

University of Toronto 52

CSC301: Introduction to Software Engineering

Command pattern

 Client creates a ConcreteCommand and binds it with a Receiver.
 Client hands the ConcreteCommand over to the Invoker which

stores it.
 The Invoker has the responsibility to do the command (“execute”

or “undo”).

Command

execute()

Receiver

action()

Client

Invoker

ConcreteCommand

execute()

binds

http://sourcemaking.com/design_patterns/command/java/1

http://sourcemaking.com/design_patterns/command/java/1�

University of Toronto 53

CSC301: Introduction to Software Engineering

Observer pattern

Observer
update()

Subject
attach(observer)
detach(observer)

notify()

ConcreteSubject
getState()

setState(newState)
subjectState

ConcreteObserver
update()

observerState

observers

subject

*

 The Subject represents the actual state, the Observers represent
different views of the state.

 Observer can be implemented as a Java interface.
 Subject is a super class (needs to store the observers vector)

http://sourcemaking.com/design_patterns/observer/java/1

http://sourcemaking.com/design_patterns/observer/java/1�

University of Toronto 54

CSC301: Introduction to Software Engineering

Template-method pattern

http://en.wikipedia.org/wiki/Template_method

http://en.wikipedia.org/wiki/Template_method�

University of Toronto 55

CSC301: Introduction to Software Engineering

Composite Pattern
 Models tree structures that represent part-whole hierarchies with

arbitrary depth and width.
 The Composite Pattern lets client treat individual objects and

compositions of these objects uniformly

Client Component

Leaf

Operation()

Composite

Operation()
AddComponent
RemoveComponent()
GetChild()

Children

http://en.wikipedia.org/wiki/Composite_pattern

http://en.wikipedia.org/wiki/Composite_pattern�

University of Toronto 56

CSC301: Introduction to Software Engineering

Proxy pattern

 Interface inheritance is used to specify the interface shared by
Proxy and RealSubject.

 Delegation is used to catch and forward any accesses to the
RealSubject (if desired)

 Proxy patterns can be used for lazy evaluation and for remote
invocation.

 Proxy patterns can be implemented with a Java interface.

Subject

Request()

RealSubject

Request()

Proxy

Request()

realSubject

http://en.wikipedia.org/wiki/Proxy_pattern

http://en.wikipedia.org/wiki/Proxy_pattern�

University of Toronto 57

CSC301: Introduction to Software Engineering

Strategy Pattern

Strategy
AlgorithmInterface

Context

ContextInterface()

ConcreteStrategyC

AlgorithmInterface()

*

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

Policy

Policy decides which Strategy is best given the current Context
http://en.wikipedia.org/wiki/Strategy_pattern

http://en.wikipedia.org/wiki/Strategy_pattern�

University of Toronto 58

CSC301: Introduction to Software Engineering

Abstract Factory
AbstractFactory

CreateProductA
CreateProductB

CreateProductA
CreateProductB

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

ConcreteFactory
1

CreateProductA
CreateProductB

ConcreteFactory
2

Client

http://en.wikipedia.org/wiki/Abstract_factory

http://en.wikipedia.org/wiki/Abstract_factory�

University of Toronto 59

CSC301: Introduction to Software Engineering

Builder Pattern

Construct()
Director

For all objects in Structure {
Builder->BuildPart()

}

BuildPart()
Builder

BuildPart()
GetResult()

ConcreteBuilderB Represen-
tation B

BuildPart()
GetResult()

ConcreteBuilder
A

Represen-
tation A

http://en.wikipedia.org/wiki/Builder_pattern

http://en.wikipedia.org/wiki/Builder_pattern�

University of Toronto 60

CSC301: Introduction to Software Engineering

 Delegation is used to
bind an Adapter and an Adaptee

 Interface inheritance is use to specify the interface of the Adapter class.
 Target and Adaptee (usually called legacy system) pre-exist the

Adapter.
 Target may be realized as an interface in Java.

Adapter pattern

Client
ClientInterface

Request()

LegacyClass

ExistingRequest()

Adapter

Request()

adaptee

http://sourcemaking.com/design_patterns/adapter/java/1

http://sourcemaking.com/design_patterns/adapter/java/1�

University of Toronto 61

CSC301: Introduction to Software Engineering

Bridge Pattern

http://en.wikipedia.org/wiki/Bridge_pattern

http://en.wikipedia.org/wiki/Bridge_pattern�

University of Toronto 62

CSC301: Introduction to Software Engineering

Facade Pattern

University of Toronto 63

CSC301: Introduction to Software Engineering

Singleton Pattern

http://sourcemaking.com/design_patterns/singleton/java/1

http://sourcemaking.com/design_patterns/singleton/java/1�

University of Toronto 64

CSC301: Introduction to Software Engineering

Design Example

	CSC301: Introduction to �Software Engineering��Lecture 5
	Software Development Lifecycle�SDLC
	Code-and-Fix Model
	Waterfall model: Linear & Sequential
	Rapid Prototyping Model
	Horizontal Prototyping
	Vertical Prototyping
	The V-Model
	The Incremental Model
	Spiral Model
	Spiral Model
	Spiral Model
	Spiral Model
	The Spiral Model
	The Spiral Model
	The Spiral Model
	The Spiral Model
	The Spiral Model
	Advantages of the Spiral Model
	Risk Assessment
	Disadvantages of the Spiral Model
	Risk Assessment Example
	Risk Assessment Example
	Risk Assessment Example
	Risk Assessment Example
	Risk Assessment Example
	Risk Assessment Example
	Capacity
	Requirements
	Design Patterns
	Pattern: Chain of Responsibility
	Problem
	Solution
	Solution: chain of responsibility
	Known Uses: UI Event Handling
	Known Uses: UI Event Handling
	Pattern: object pool
	Problem
	Solution: object pool!
	Pattern: flyweight
	Problem
	Solution
	Pattern: memento
	Problem
	Solution
	Pattern: iterator
	Problem
	Solution
	Pattern: prototype
	Problem
	Solution
	Design Patterns: a quick overview
	Command pattern
	Observer pattern
	Template-method pattern
	Composite Pattern
	Proxy pattern
	Strategy Pattern
	Abstract Factory�
	Builder Pattern
	Adapter pattern
	Bridge Pattern
	Facade Pattern
	Singleton Pattern
	Design Example

