
University of Toronto 0

CSC301: Introduction to
Software Engineering

Lecture 6
Slides By: Wael Aboulsaadat

Based on Slides by Many Others. Acknowledgment due for all those
who agreed to Contribute Slides.

University of Toronto 1

Software Design:
designing for change!

University of Toronto 2

CSC301: Introduction to Software Engineering

1. Avoid creating an object by specifying a
class explicitly
 Bad

Employee emp;
X emp = new Employee();

 You are committing yourself to a specific implementation…

 Patterns: abstract factory, factory method, prototype

University of Toronto 3

CSC301: Introduction to Software Engineering

2. Avoid dependence on specific operations

 Bad
EmailSender emailSender;
emailSender = new EmailSender();

X emailSender.sendEmail(….);

 You are committing yourself to one way of satisfying a request

 Patterns: chain of responsibility, command

University of Toronto 4

CSC301: Introduction to Software Engineering

3. Avoid dependence on hardware and
software platforms
 Bad

MSWindowsCoolToolbar toolbar;
toolbar = new X MSWindowsCoolToolbar();
toolbar.addIcon(new X MSWindowsCoolIcon (….));

 You are committing yourself to a specific hardware..

 Patterns: abstract factory, bridge

University of Toronto 5

CSC301: Introduction to Software Engineering

4. Avoid dependence on object
representations or implementations
 Bad

X int arrNums[];
X arrNums = new int[];
X arrNums[0] = 10;

 Clients that know how an object is implemented might
need to be changed when the object changes

 Patterns: abstract factory, bridge, memento, proxy

University of Toronto 6

CSC301: Introduction to Software Engineering

5. Avoid algorithmic dependencies

 Bad
X BubbleSort bSort;
bSort.sort(narr);

 Algorithms are often changed.

 Patterns: builder, iterator, strategy, template method, visitor

University of Toronto 7

CSC301: Introduction to Software Engineering

6. Avoid tight coupling

 Bad
Employee emp;
Address address;

X address = new Address(emp , ….);
X emp = new Employee(address);
X emp.setCreditCard(new CreditCard(emp, address, …));

 Tight coupling leads to monolithic system

 Patterns: abstract factory, bridge, chain of responsibility,
command, façade, mediator, observer

University of Toronto 8

CSC301: Introduction to Software Engineering

7. Avoid extending functionality by sub-
classing…

 Customizing an object by sub-classing has drawbacks. Don’t
do it unless you are really specializing the parent class.

 Patterns: bridge, chain of responsibility, composite, decorator,
observer, strategy

University of Toronto 9

Pair Programming

University of Toronto 10

CSC301: Introduction to Software Engineering

Pair Programming

University of Toronto 11

CSC301: Introduction to Software Engineering

Pair Programming: A Historical
Perspective

. . . 1945 1995 1996 1997 1998 1999 200
0

2001

John von Neumann, the great mathematician and creator
of the von Neumann computer architecture, recognized
his own inadequacies and continuously asked others to
review his work.

http://www-groups.dcs.st-andrews.ac.uk/~history/PictDisplay/Von_Neumann.html�

University of Toronto 12

CSC301: Introduction to Software Engineering

Pair Programming: A Historical
Perspective

. . . 1953 1995 1996 1997 1998 1999 200
0

2001

Fred Brooks and many others are pair programming, though
they don’t know there is a name for it.

“Fellow graduate student Bill Wright and I first tried pair-
programming when I was a g rad student. We produced 1500
lines of defect-free code; it ran correctly first try.

I encourage my own computer architecture students to work in
pairs on all design projects. I am firmly convinced that it is
not only as productive per person-hour, but also much more
educational.”

University of Toronto 13

CSC301: Introduction to Software Engineering

Pair Programming: A Historical
Perspective

. . . 1995 1996 1997 1998 1999 200
0

2001

In “Constantine on Peopleware,” Larry Constantine writes
about Dynamic Duos producing code faster and more defect-
free

Jim Coplien writes a “Developing in Pairs” Organizational
Pattern . . . “together, they can produce more than the sum
of the two individually.”

http://images.amazon.com/images/P/0133319768.01.LZZZZZZZ.gif�
http://www1.bell-labs.com/user/cope/coplien.tiff.gz�

University of Toronto 14

CSC301: Introduction to Software Engineering

Pair Programming: A Historical
Perspective

. . . 1995 1996 1997 1998 1999 2000 2001

Hill Air Force Base:

“Total productivity was 175 lines per person-month (lppm) compared to a
documented average individual productivity of only 77 lppm . . .

The error rate through software-system integration was three orders of
magnitude lower than the organization's norm . . .

A brief list of observed phenomena includes focused energy, brainstorming,
problem solving, continuous design and code walkthroughs, mentoring and
motivation.”

http://www.bertola.org/essays/airforce/f102a.jpg�

University of Toronto 15

CSC301: Introduction to Software Engineering

© Williams/Kessler 2004

Pair Programming: A Historical
Perspective

. . . 1995 1996 1997 1998 1999 2000 2001

Temple University Professor Nosek runs (small scale) experiment:

 Pairs spent 60% more minutes on the task (but faster cycle time)

 Pairs produced better algorithms

 Pairs enjoyed the problem solving process more

University of Toronto 16

CSC301: Introduction to Software Engineering

Pair Programming: A Historical
Perspective

. . . 1995 1996 1997 1998 1999 200
0

2001

Wiki

“Get two people programming in pairs, and they'll work
more than twice as fast as one could have.”

“One of the rules of the Chrysler Comprehensive
Compensation team is that all production code be written
with a partner. As a testimonial, in the last six months before
launching, the only code that caused problems was code
written solo.”

Success Stories

University of Toronto 17

CSC301: Introduction to Software Engineering

Pair Programming: A Historical
Perspective

. . . 1995 1996 1997 1998 1999 200
0

2001

Alistair Cockburn & University of Utah experiments

Success Stories

University of Toronto 18

CSC301: Introduction to Software Engineering

Empirical Study for Validation
 Practice: Summer 1999

̶ 20 Students (Sophomore/Junior)
• All worked collaboratively

̶ Generated more anecdotal/qualitative evidence

 Solo vs Pair: Fall 1999
̶ 41 Students (Junior/Senior)

• 28 Worked Collaboratively
• 13 Worked Individually

̶ Software development process was controlled
• The only experimental variable: pair-programming

̶ Quantitative: Time, Quality, Enjoyment, Confidence

University of Toronto 19

CSC301: Introduction to Software Engineering

Post Development Test Cases Passed

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

Program 1 Program 2 Program 3 Program 4

Individuals
Collaborators

University of Toronto 20

CSC301: Introduction to Software Engineering

Elapsed Time

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

Program 1 Program 2 Program 3

One Individual One Collaborator

University of Toronto 21

CSC301: Introduction to Software Engineering

University of Toronto 22

CSC301: Introduction to Software Engineering

Research Findings to Date
 Strong anecdotal evidence from industry

̶ “We can produce near defect-free code in less than
half the time.”

 Empirical Study
̶ Pairs produced higher quality code

• 15% less defects (difference statistically significant)

̶ Pairs completed their tasks in about half the time
• 58% of elapsed time (difference not statistically significant)

̶ Most programmers reluctantly embark on pair
programming

• Pairs enjoy their work more (92%)
• Pairs feel more confident in their work products (96%)

University of Toronto 23

CSC301: Introduction to Software Engineering

Why does it work?
 Pair-Pressure

̶ Keep each other on task and focused
̶ Don’t want to let partner down
̶ “Embarrassed” to not follow the prescribed process
̶ Parkinson’s Law “Work expands to fill all available time.”

 Pair-Negotiation
̶ Distributed Cognition: “Searching Through Larger Spaces of

Alternatives”
• Have shared goals and plans
• Bring different prior experiences to the task
• Different access to task relevant information
• Must negotiate a common shared of action

 Pair-Relaying
̶ Each, in turn, contributes to the best of their knowledge and ability
̶ Then, sit back and think while their partner fights on

University of Toronto 24

CSC301: Introduction to Software Engineering

© Williams/Kessler 2004

Why does it work ?
 Pair-Reviews

̶ Continuous design and code reviews
̶ Ultimate in defect removal efficiency
̶ Removes programmers distaste for reviews

• 80% of all (solo) programmers don’t do them regularly or at all

 Pair Debugging

 Pair-Learning
̶ Continuous reviews  learn from partners techniques, knowledge of

language, domain, etc.
̶ “Between the two of us, we knew it or could figure it out”
̶ Apprenticeship

University of Toronto 25

CSC301: Introduction to Software Engineering

Distributed Pair Programming
 Net Meeting
 Yahoo Messenger
 Many more tools

University of Toronto 26

CSC301: Introduction to Software Engineering

Pair Programming Partner Picking Principles
 Beneficial Pairs

̶ Expert-Expert
̶ Expert-Novice
̶ Novice-Novice

 Problem Pairs
̶ The Professional Driver
̶ Excess Ego
̶ Too Little Ego

 Non-issue Pairs
̶ Gender
̶ Culture

University of Toronto 27

CSC301: Introduction to Software Engineering

Expert/Expert
 Intent – To get the most complex job done well
 Success Keys

̶ R E S P E C T!!!!!
̶ Warp speed (no time explaining things)
̶ Intense/Exhausting – Joking around helps
̶ Even experts in different areas works
̶ Each learns new stuff

 Warnings
̶ Use expert-expert as your ultimate resort to fix a hard problem
̶ Watch out for ego issues

University of Toronto 28

CSC301: Introduction to Software Engineering

Expert/Novice
 Intent – To get the easier job done,

while training and integrating the novice
 Success Keys

̶ Why ever do this? (Waste of expert's time)
• TRAINING
• Novice can watch decisions being made
• Novice sees the processes being used
• Helps to be assimilated into the collective
• Master/apprentice is VERY POWERFUL

̶ Amazingly – novice helps the expert find mistakes
• Slowing down to answer questions and often asks 'WHY?'

 Warnings
̶ Expert must be a "teacher" and be willing to be a teacher
̶ Must have PATIENCE!
̶ Must create an environment that is non-threatening to the

novice

University of Toronto 29

CSC301: Introduction to Software Engineering

This is NOT Pair Programming

http://www.youtube.com/watch?v=_sOscpW1zus

University of Toronto 30

CSC301: Introduction to Software Engineering

Novice/Novice
 Intent – To produce production code

in a relatively non-complex area of the
project, gaining valuable experience for both programmers
in the process.

 Success Keys
̶ Good technique for learning

• What one doesn't know, the other might know or can look up
• Can reduce time required by a supervisor

̶ Each novice can educate the other in their particular area of specialty
̶ Tend to not just struggle (as a single often does), if they both don’t know it,

they will ask someone more experienced
 Warnings

̶ Instructor, coach or mentor is REQUIRED!!!
̶ A few people say they don't do it because novices spin their wheels

• better than solo novices…

University of Toronto 31

CSC301: Introduction to Software Engineering

Pro Driver Anti-Pattern
 Root Cause – Desire for power; driver’s lack of confidence in

navigator; or navigator’s lack of confidence in self.
 General Form

̶ Driver ALWAYS at the keyboard
̶ Navigator feels disjoint, out of the loop, or unimportant
̶ Gets worst if the driver doesn't listen to the navigator

• This can kill the pairing!!
̶ An "innocent" pro driver can happen when the navigator becomes a

professional navigator and lacks the self confidence to drive
̶ A "good" professional driver is covering for a physical or other limitation of the

navigator – NO PROBLEM
̶ Or under a tight deadline and the driver "knows" the tools

 Refactored Solution
̶ Teach the driver to give up control

• Can be very difficult
• Have driver observe a good driver/navigator pair

̶ Get navigator to drive

University of Toronto 32

CSC301: Introduction to Software Engineering

Bob and Laurie – Expert/Expert Pairing
/**

* Composes and sends a message to Broker requesting that a

* room be scheduled.

* @param room - the room to be scheduled

*/

protected List scheduleRoom(Place room) {

//set originating AID as the one from the agent

AID fromAID = this.agent.getAID();

//set the destination AID as the one of the Broker

AID toAID = new AID(this.BROKER_NAME, AID.ISLOCALNAME);

// Store the actions

/*** START HERE

}

University of Toronto 33

CSC301: Introduction to Software Engineering

Bob and Laurie – Expert/Expert Pairing
Bob (typing with two fingers): If we utilize a list of

components here, we will be able easily scan them in the
execution phase. (He quickly types: List list = new Vector(1);

list.add(action);

Laurie (watching): Yes, but if you use an ArrayList, we'll be
able to manage it later on in the next version.

Bob (typing): Good idea. (He quickly changes it to an
ArrayList.)

Laurie (watching): Wait, you changed two lines instead of one
and you deleted an important line.

Bob (typing): Damn, I did it again. My RSI is acting up again.
(He hits control Z to undo the deletion.)

Laurie (laughing): You were the world’s worst typist before the
RSI. I can’t stand to watch you type!!! Let me drive.

Bob (mumbles to himself): Maybe we can get this speech input
thing to work on code?

Laurie (screaming): Arrrrrgggggghhhhhh. Give me the keyboard!!!

University of Toronto 34

CSC301: Introduction to Software Engineering

Hera (God) and Plutonius (Scared Lamb) –
Expert/Novice Pairing

...
boolean result=false;
EventHandler t=null;
journal.printInfo(3, getName() + " checking");
Enumeration eventHandlerList = eventHandlers.elements();
// Check all non-default transitions.
while (eventHandlerList.hasMoreElements() & !result) {

t=(EventHandler)eventHandlerList.nextElement();
result=t.eventMatch(e);

};
/*** START HERE

}

University of Toronto 35

CSC301: Introduction to Software Engineering

Hera (God) and Plutonius (Scared Lamb) –
Expert/Novice Pairing

Hera: x = frobnatz.bar(1, y,
Pl – meekly: excuse me
Hera: WHAT – keeps typing: errorNum++,
Pl – cowering: Why did you type a space after the comma and
before the variable ‘y’?
Hera: That is how I always do it. (continues typing) 7);
Pl - Why?
Hera: BECAUSE, THAT IS HOW I ALWAYS DO IT!!! Now it is your
turn to drive.
Pl - z = frobnatz.mumble(3,4
Hera (screams): Noooooo!!!! (and whacks Pl in the back of the head)
Pl (whimpering and typing even slower): <backspace> <space> 4);

University of Toronto 36

CSC301: Introduction to Software Engineering

Danny and Julie – Novice/Novice Pairing
/**

* Basic main test program

* @param args – command line arguments

*/

public static void main(String[] args) {

/*** START HERE

} //~ END main()

University of Toronto 37

CSC301: Introduction to Software Engineering

Danny and Julie – Novice/Novice Pairing
First Newbie (driving): int x;
Second Newbie (watching): Wait, why are you using x for the variable name?
First Newbie: Well, it is the name that I just thought of.
Second Newbie: But why not use y? I like y’s much better than x’s. X’s remind me of that

XOXO thing that means kiss hug kiss hug. Yuck.
First Newbie: Hum, I never thought of that, ok let’s use y’s. (typing commences replacing the

variable name with y)
Second Newbie (watching again): Wait, if we use y, someone might think of the word “WHY”.
First Newbie (thinking hard): Yes, you are absolutely correct. Let’s use z. I can’t think of

anything that will get confused with z. (so the variable is changed again)
Second Newbie (watching and starts to laugh): Hey, I just remembered something.
First Newbie (stops typing): What?
Second Newbie (chuckling): In my Software Practice class, Professor Kessler told us to

choose variable names that actually meant something. I completely forgot about that.
You know, that was a pretty good class.

First Newbie (remembering fondly): Yes, I took it the year before you did and we discussed
the same thing. I completely forgot that too. Maybe we should choose a better name.

Second Newbie (thinking hard again): Yes, but what makes sense here?

University of Toronto 38

CSC301: Introduction to Software Engineering

Pro and Rookie – Pro Driver Pairing
private Place selectRoom(ACLMessage msg) {

Object obj;
Place room = null;
ExpOneOf instanceCollection;
Iterator instances;
List list = null;
try {

list = agent.extractContent(msg);
} catch(Exception ex) {

agent.printError("Content extraction error");
}
/**** START HERE

return room;
}

University of Toronto 39

CSC301: Introduction to Software Engineering

Pro and Rookie – Pro Driver Pairing
Pro Driver (typing very fast): Ah grasshopper, if you can take the keyboard from my

hand, then you will be the master.
Grasshopper (reaches for the keyboard)
Pro Driver (deftly moving the keyboard to the left while still typing): You must be

much quicker than that grasshopper.
Grasshopper (observes the typing and tries a feint to the right and a grab from the

left)
Pro Driver (grabs the keyboard by the escape key and lifts it up 3 inches)
Grasshopper (gets nothing but air): Damn.
Pro Driver (typing even faster now, using his elbows): Grasshopper, that is the

oldest trick in the book.
Grasshopper (excitedly points): Hey, look at what Jerry left on his monitor!!
Pro Driver (expertly typing with his feet): Grasshopper, no, I was mistaken, THAT is

the oldest trick in the book.

University of Toronto 40

CSC301: Introduction to Software Engineering

Workplace Layout

Bad Better

Best (RoleModel XP Studio)

University of Toronto 41

Code Reviews

University of Toronto 42

CSC301: Introduction to Software Engineering

Formal Code reviews
 Code presenter is not the author of the code.

 The other participants are the inspectors &
coder

 There is a moderator to assure that the rules are followed
and the meeting runs smoothly.

 After the inspection a report is composed. The programmer
then makes changes and a re-inspection occurs, if
necessary.

 Formal code inspections are effective at finding bugs in
code and designs and are gaining in popularity.

University of Toronto 43

CSC301: Introduction to Software Engineering

Code reviews
 Reviewer:

̶ Ask questions rather than make statements
̶ Avoid the "Why" questions.
̶ Remember to praise
̶ Make sure you have good coding standards to reference
̶ Make sure the discussion stays focused on the code and not

the coder
̶ Remember that there is often more than one way to

approach a solution

University of Toronto 44

CSC301: Introduction to Software Engineering

3. Communication: code reviews
 Coder:

̶ Remember that the code isn't you
̶ Create a checklist for yourself of the things that the

code reviews tend to focus on
̶ Help to maintain the coding standards

University of Toronto 45

CSC301: Introduction to Software Engineering

Code review checklist: Data reference errors
1. Is an un-initialized variable referenced?

2. Are array subscripts integer values? within the array’s bounds?

3. Are there off-by-one errors in indexing operations or references to
arrays?

4. Is a variable used where a constant would work better?

5. Is a variable assigned a value that’s of a different type than the
variable?

6. Is memory allocated for referenced pointers?

7. Are data structures that are referenced in different functions
defined identically?

University of Toronto 46

CSC301: Introduction to Software Engineering

Code review checklist: Data declaration errors
8. Are the variables assigned the correct length, type, storage class?

̶ E.g. should a variable be declared a string instead of an array
of characters?

9. If a variable is initialized at its declaration, is it properly initialized
and consistent with its type?

10. Are there any variable with similar names?

11. Are there any variables declared that are never referenced or just
referenced once (should be a constant)?

12. Are all variables explicitly declared within a specific module?

University of Toronto 47

CSC301: Introduction to Software Engineering

Code review checklist: Computation errors
13. Do any calculations that use variables have different data types?

̶ E.g., add a floating-point number to an integer
14. Do any calculations that use variables have the same data type

but are different size?
̶ E.g., add a long integer to a short integer

15. Are the compiler’s conversion rules for variables of inconsistent
type or size understood?

16. Is overflow or underflow in the middle of a numeric calculation
possible?

17. Is it ever possible for a divisor/modulus to be 0?
18. Can a variable’s value go outside its meaningful range?

̶ E.g., can a probability be less than 0% or greater than 100%?
19. Are parentheses needed to clarify operator presence rules?

University of Toronto 48

CSC301: Introduction to Software Engineering

Code review checklist: Comparison errors

20. Are the comparisons correct?
̶ E.g., < instead of <=

21. Are there comparisons between floating-point
values?
̶ E.g., is 1.0000001 close enough to 1.0000002 to be equal?

22. Are the operands of a Boolean operator Boolean?
̶ E.g., in C 0 is false and non-0 is true

University of Toronto 49

CSC301: Introduction to Software Engineering

Code review checklist: Control flow errors
23. Do the loops terminate? If not, is that by design?

24. Does every switch statement have a default clause?

25. Are there switch statements nested in loops?

̶ E.g., careful because break statements in switch statements will not
exit the loop … but break statements not in switch statements will
exit the loop.

26. Is it possible that a loop never executes? Is it acceptable if it
doesn’t?

27. Does the compiler support short-circuiting in expression
evaluation?

University of Toronto 50

CSC301: Introduction to Software Engineering

Code review checklist: Subroutine parameter
errors

28. If constants are passed to the subroutine as arguments
are they accidentally changed in the subroutine?

29. Do the units of each parameter match the units of each
corresponding argument?
̶ E.g., English versus metric
̶ This is especially pertinent for SOA components

30 .Do the types and sizes of the parameters received by a
subroutine match those sent by the calling code?

University of Toronto 51

CSC301: Introduction to Software Engineering

Code review checklist: Input/Output errors
31. If the file or peripheral is not ready, is that error condition

handled?

32. Does the software handle the situation of the external device
being disconnected?

33. Have all error messages been checked for correctness,
appropriateness, grammar, and spelling?

34. Are all exceptions handled by some part of the code?

35. Does the software adhere to the specified format of the date
being read from or written to the external device?

University of Toronto 52

Software Engineering Rules

University of Toronto 53

CSC301: Introduction to Software Engineering

1) Brook’s Rule

 Adding people to a late project makes it later
 Because the people already in the project are now spending

time getting new staff up to speed

 Implication:
 If the project is behind:

 Re-prioritize
 Get other people to deal with distractions

University of Toronto 54

CSC301: Introduction to Software Engineering

2) Glass's Rule

 Any new tool or technique initially makes the adopter slower. .
 It's faster to do today's assignment in Notepad than it is to learn

Emacs
 P.S.: 5-35% productivity improvement is the best you'll see

(despite "order of magnitude" claims from vendors or
inventors…)

 Implication:
 It's only worth adopting new tools and techniques if you're willing

to be patient

University of Toronto 55

CSC301: Introduction to Software Engineering

3) False Alerts Rule

 As the rate of erroneous alerts increases, operator reliance, or
belief, in subsequent warnings decreases.

 Implication:
 DO NOT cut on QA resources if number of actual bugs

decreases

University of Toronto 56

CSC301: Introduction to Software Engineering

4) Hick’s Law

 The time to make a decision is a function of the possible
choices he or she has.

 Implication:
 DO NOT hand developers vague requirements, why?

University of Toronto 57

CSC301: Introduction to Software Engineering

5) Lister’s Law

 People under time pressure don’t think faster!

 Implication:
 Expect almost constant performance/output from your team

University of Toronto 58

CSC301: Introduction to Software Engineering

6) Boehm’s Curve Rule

 Up to 100 times more expensive to fix requirements error in
production than in early stages of development

 Implication:
 Get user on board early

University of Toronto 59

CSC301: Introduction to Software Engineering

7) Sixty-sixty Rule

 Sixty percent of software’s dollar is spent on maintenance, and
sixty percent of that maintenance is enhancement.

 Implication:
 Get user on board early

University of Toronto 60

CSC301: Introduction to Software Engineering

8) Maintenance Rules
 Maintenance makes up 40-80% of the cost of a software

project.
̶ finding has been validated many times since
̶ The single largest cost in most projects, but almost always

underestimated

 Enhancement is roughly 60% of "maintenance".
̶ Enhancement usually a result of changing requirements

• Yes, they keep changing after software is in production
̶ How much effort goes into other kinds of maintenance?

• 18%: adaptive maintenance (i.e., keeping up with a changing
environment)

• 17%: error correction, 5%: miscellaneous

University of Toronto 61

CSC301: Introduction to Software Engineering

8) Maintenance Rules – cont’d
 30% of maintenance time is spent figuring out how the

software actually works
̶ This figure rises as the software ages

 Better software engineering leads to more maintenance,
not less.
̶ the better the system, the longer it will live, and the more

changes are possible

University of Toronto 62

CSC301: Introduction to Software Engineering

8) Maintenance Rules – cont’d
 Small changes have a higher error density than large

ones.
̶ Small changes require the same level of program

understanding as large ones
• So mistakes are just as likely
• So density is higher

̶ This does not mean you should batch changes into bigger
lumps!

	CSC301: Introduction to �Software Engineering��Lecture 6
	Software Design: �designing for change!�
	1. Avoid creating an object by specifying a class explicitly
	2. Avoid dependence on specific operations
	3. Avoid dependence on hardware and software platforms
	4. Avoid dependence on object representations or implementations
	5. Avoid algorithmic dependencies
	6. Avoid tight coupling
	7. Avoid extending functionality by sub-classing…
	Pair Programming
	Pair Programming
	Pair Programming: A Historical Perspective
	Pair Programming: A Historical Perspective
	Pair Programming: A Historical Perspective
	Pair Programming: A Historical Perspective
	Pair Programming: A Historical Perspective
	Pair Programming: A Historical Perspective
	Pair Programming: A Historical Perspective
	Empirical Study for Validation
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Research Findings to Date
	Why does it work?
	Why does it work ?
	Distributed Pair Programming
	Pair Programming Partner Picking Principles
	Expert/Expert
	Expert/Novice
	This is NOT Pair Programming
	Novice/Novice
	Pro Driver Anti-Pattern
	Bob and Laurie – Expert/Expert Pairing
	Bob and Laurie – Expert/Expert Pairing
	Hera (God) and Plutonius (Scared Lamb) – Expert/Novice Pairing
	Hera (God) and Plutonius (Scared Lamb) – Expert/Novice Pairing
	Danny and Julie – Novice/Novice Pairing
	Danny and Julie – Novice/Novice Pairing
	Pro and Rookie – Pro Driver Pairing
	Pro and Rookie – Pro Driver Pairing
	Workplace Layout
	Code Reviews
	Formal Code reviews
	Code reviews	
	3. Communication: code reviews	
	Code review checklist: Data reference errors
	Code review checklist: Data declaration errors
	Code review checklist: Computation errors
	Code review checklist: Comparison errors
	Code review checklist: Control flow errors
	Code review checklist: Subroutine parameter errors
	Code review checklist: Input/Output errors
	Software Engineering Rules
	1) Brook’s Rule
	2) Glass's Rule
	3) False Alerts Rule
	4) Hick’s Law
	5) Lister’s Law
	6) Boehm’s Curve Rule
	7) Sixty-sixty Rule
	8) Maintenance Rules
	8) Maintenance Rules – cont’d
	8) Maintenance Rules – cont’d

