
University of Toronto 0

CSC301: Introduction to
Software Engineering

Lecture 7

Wael Aboulsaadat

University of Toronto 1

Agile SDLC

University of Toronto 2

CSC301: Introduction to Software Engineering

History: How did “agile” arise
 “Agile” techniques were in use since the beginning.

 Agile (mobility-based) techniques did not show
competitive advantage in the 1970s / 1980s, but did
during the 1990s and do now.

 1994: trials of semi-formal agile methodologies
RAD DSDM
XP Crystal
Scrum Adaptive

University of Toronto 3

CSC301: Introduction to Software Engineering

Agile SDLC

University of Toronto 4

CSC301: Introduction to Software Engineering

Agile SDLC

University of Toronto 5

CSC301: Introduction to Software Engineering

Agile SDLC: core concepts
1) Pair Programming

̶ people work best in pairs so that they complement each other's
strengths and weaknesses

̶ Benefits: Economics, Satisfaction, Design quality, Continuous
Reviews, Problem solving, Learning, Team Building and
Communication, Staff and Project Management

University of Toronto 6

CSC301: Introduction to Software Engineering

Agile SDLC: core concepts
2) Stories and Test/Requirement-driven development

̶ The project is done in iterations (1 – 3 weeks). At the end of an
iteration, the next iteration is planned out in an iteration planning
meeting. The customer (with the developers' guidance, of
course) decides what stories are to be implemented in the next
iteration, based on what is most important to them, and what is
most practical to implement next.

University of Toronto 7

CSC301: Introduction to Software Engineering

Agile SDLC: core concepts
2) Stories and Test/Requirement-driven development

̶ A project's requirements are laid out as individual stories. These
stories have test cases. A test case includes the test and the
desired results which, if met, indicate that that story is complete.

̶ The stories are broken down into tasks, which are the steps
needed to implement a given user story. Developers then sign
up to do those tasks.

University of Toronto 8

CSC301: Introduction to Software Engineering

Agile SDLC: core concepts
2) Stories and Test/Requirement-driven development

̶ On the completion of an iteration, acceptance tests are done to ensure
that the test cases defined in that story have been met. The
acceptance tests include both automated unit testing, and customer
testing. This makes sure that all requirements are reached because
the development is based around those requirements and there are
definite indicators on whether a given requirement is met. It also
breaks down the project into reachable goals rather than having
programmers work away forever on an ever-expanding megalith.

University of Toronto 9

CSC301: Introduction to Software Engineering

Agile SDLC: core concepts
3) Simplicity

̶ Go the simplest way that meets the requirements - complexity may be
clever, but it costs more in the end (maintenance, etc). No needless
complications.

University of Toronto 10

CSC301: Introduction to Software Engineering

Agile SDLC: core concepts
4) Design as you go!

̶ This development method enables the design to evolve as you
implement the stories and get an in-depth look at what is needed to fill
the requirements.

̶ This will, of course, require a lot of refactoring of code… but it also will
lead to the flexibility to add new features as they come.

̶ Needless to say, JIT Designing is one of the most controversial
concepts in agile SDLC...

University of Toronto 11

CSC301: Introduction to Software Engineering

Agile SDLC: core concepts
4) Design as you go!

̶ This development method enables the design to evolve as you
implement the stories and get an in-depth look at what is
needed to fill the requirements.

̶ This will, of course, require a lot of refactoring of code… but it
also will lead to the flexibility to add new features as they come.

̶ Warning: needless to say, JIT Designing is one of the most
controversial concepts in agile SDLC...

• It can become counter-productive to design as you go because
certain things need to be planned out ahead of any implementation.
With no concrete design, things can become chaos.

• However, there are many things which, if planned ahead, will only
be re-designed later on.

University of Toronto 12

CSC301: Introduction to Software Engineering

Agile SDLC: core concepts
5) Close collaboration/feedback

̶ A daily stand-up meeting of all members of the group.
• At some point in each day, a stand-up meeting is held where

everyone stands up in a circle and talks about the project and its
progress.

̶ Swapping developers between tasks, so everyone gets to know all the
different parts of the system being developed.

University of Toronto 13

CSC301: Introduction to Software Engineering

Agile SDLC: core concepts
6) Continuous Integration

̶ Eliminates the headaches of working with outdated code and trying to
integrate fragmented or diverging code into the system.

University of Toronto 14

CSC301: Introduction to Software Engineering

Agile SDLC: core concepts
7) Sustainable Pace

̶ maintain a moderate pace that can be sustained throughout the entire
length of the project.

• No caffeine night-dose, no free chocolate

University of Toronto 15

CSC301: Introduction to Software Engineering

Agile SDLC: core concepts
8) Onsite customer

̶ Have the customer be as available and as close as possible,
preferably on-site.

• Warning: It is unlikely that it will be possible for a competent
customer representative to be available at all times… 

University of Toronto 16

CSC301: Introduction to Software Engineering

Agile SDLC: core concepts
9) Collective Code ownership

̶ Anyone in the developer team should be able to change any piece of
code.

• Warning: If the person who changed the code does not talk to
others both before and after the changes, problems can arise

University of Toronto 17

CSC301: Introduction to Software Engineering

Agile SDLC: core concepts
10) Refactor Mercilessly

̶ When you see something that could be better and simpler, change it!
• Warning:

 If you're constantly changing things, it can be hard for everyone
to keep up with the changes

 Regression testing is a must with constant refactoring. The
reliance on testing becomes a weak point

University of Toronto 18

Refactoring

University of Toronto 19

CSC301: Introduction to Software Engineering

What is Refactoring?

 The process of changing a software system in
such a way that it does not alter the external
behaviour of the code, yet improves its internal
structure.

̶ Fowler, et al., Refactoring, 1999.

University of Toronto 20

CSC301: Introduction to Software Engineering

Typical Refactorings

Class Refactorings Method Refactorings Attribute Refactorings
add (sub)class to hierarchy add method to class add variable to class
rename class rename method rename variable
remove class remove method remove variable

push method down push variable down
push method up pull variable up
add parameter to method create accessors
move method to component abstract variable
extract code in new method

University of Toronto 21

CSC301: Introduction to Software Engineering

How to do refactoring

 Need to know about design patterns
 Need to know about anti-patterns
 Need to know about refactoring patterns

 You can start by checking for bad-smell in code!

There are at least 192 design patterns, 72 analysis patterns,
42 anti-patterns, and 70 refactoring patterns

University of Toronto 22

CSC301: Introduction to Software Engineering

Bad smell in code: within classes

 Lots of comments
 Long method
 Large Class
 Long Parameter List
 Duplicate Code
 Conditional complexity
 Checking on type
 Inconsistent/uncommuincative names
 Dead code

University of Toronto 23

CSC301: Introduction to Software Engineering

Bad smell in code: in-between classes

 Primitive Obsession
 Data Class
 Data Clumps
 Refused Bequest
 Inappropriate Intimacy
 Indecent Exposure
 Shotgun Surgery
 And many more…

University of Toronto 24

CSC301: Introduction to Software Engineering

Refactoring patterns: classification
 Composing methods
 Moving features between objects
 Organizing Data
 Simplifying conditional expressions
 Making method calls simpler
 Dealing with generalization
 Big effort

University of Toronto 25

CSC301: Introduction to Software Engineering

Refactoring patterns

Read all patterns here:
http://sourcemaking.com/refactoring

University of Toronto 26

CSC301: Introduction to Software Engineering

What is an AntiPattern?
 Describing AntiPatterns

̶ Symptoms and Consequences
̶ Typical Causes
̶ Known Exceptions
̶ Refactored Solutions
̶ Variations

 Anti-patterns classification
̶ Architecture anti-patterns
̶ Development anti-patterns
̶ Management anti-patterns

http://c2.com/cgi/wiki?AntiPatternsCatalog

http://c2.com/cgi/wiki?AntiPatternsCatalog�

University of Toronto 27

CSC301: Introduction to Software Engineering

Helpers for agile methodology
 Smart IDEs

 Hungarian notation

 Code Annotation

University of Toronto 28

CSC301: Introduction to Software Engineering

Helpers for agile methodology: Smart IDEs

 E.g. IntelliJ IDE, eclipse, netbeans

University of Toronto 29

CSC301: Introduction to Software Engineering

Helpers for agile methodology: Hungarian
notation

 A useful naming convention for attributes and
methods

 http://en.wikipedia.org/wiki/Hungarian_notation

http://en.wikipedia.org/wiki/Hungarian_notation�

University of Toronto 30

CSC301: Introduction to Software Engineering

Helpers for agile methodology: Code
Annotation
 Documentation

vs.

 Annotation

University of Toronto 31

CSC301: Introduction to Software Engineering

Helpers for agile methodology: Code
Annotation

University of Toronto 32

CSC301: Introduction to Software Engineering

Helpers for agile methodology: Code
Annotation

	CSC301: Introduction to �Software Engineering��Lecture 7
	Agile SDLC
	History: How did “agile” arise
	Agile SDLC
	Agile SDLC
	Agile SDLC: core concepts
	Agile SDLC: core concepts
	Agile SDLC: core concepts
	Agile SDLC: core concepts
	Agile SDLC: core concepts
	Agile SDLC: core concepts
	Agile SDLC: core concepts
	Agile SDLC: core concepts
	Agile SDLC: core concepts
	Agile SDLC: core concepts
	Agile SDLC: core concepts
	Agile SDLC: core concepts
	Agile SDLC: core concepts
	Refactoring
	What is Refactoring?
	Typical Refactorings
	How to do refactoring
	Bad smell in code: within classes
	Bad smell in code: in-between classes
	Refactoring patterns: classification
	Refactoring patterns
	What is an AntiPattern?
	Helpers for agile methodology
	Helpers for agile methodology: Smart IDEs
	Helpers for agile methodology: Hungarian notation
	Helpers for agile methodology: Code Annotation
	Helpers for agile methodology: Code Annotation
	Helpers for agile methodology: Code Annotation

