
University of Toronto 0

CSC301: Introduction to
Software Engineering

Lecture 8

Wael Aboulsaadat

University of Toronto 1

Software Testing

University of Toronto 2

CSC301: Introduction to Software Engineering

Basic definitions
̶ A failure is an unacceptable behaviour exhibited by a system

• The frequency of failures measures the reliability
• An important design objective is to achieve a very low failure

rate and hence high reliability.
• A failure can result from a violation of an explicit or implicit

requirement

̶ A defect is a flaw in any aspect of the system that contributes, or
may potentially contribute, to the occurrence of one or more
failures

• could be in the requirements, the design and the code
• It might take several defects to cause a particular failure

̶ An error is a slip-up or inappropriate decision by a software
developer that leads to the introduction of a defect

University of Toronto 3

CSC301: Introduction to Software Engineering

Effective and Efficient Testing
 To test effectively, you must use a strategy that

uncovers as many defects as possible.
 To test efficiently, you must find the largest possible

number of defects using the fewest possible tests
̶ Testing is like detective work:

• The tester must try to understand how programmers
and designers think, so as to better find defects.

• The tester must not leave anything uncovered, and
must be suspicious of everything.

• It does not pay to take an excessive amount of time;
tester has to be efficient.

University of Toronto 4

CSC301: Introduction to Software Engineering

Glass-box testing
 Also called ‘white-box’ or ‘structural’ testing

 Testers have access to the system design
̶ They can

• Examine the design documents
• View the code
• Observe at run time the steps taken by algorithms and

their internal data
̶ Individual programmers often informally employ glass-box

testing to verify their own code

University of Toronto 5

CSC301: Introduction to Software Engineering

Flow graph for glass-box testing
 To help the programmer to systematically test

the code
̶ Each branch in the code (such as if and while

statements) creates a node in the graph
̶ The testing strategy has to reach a targeted coverage

of statements and branches; the objective can be to:
• cover all possible paths (often infeasible)
• cover all possible edges (most efficient)
• cover all possible nodes (simpler)

University of Toronto 6

CSC301: Introduction to Software Engineering

Flow graph for glass-box testing

University of Toronto 7

CSC301: Introduction to Software Engineering

Black-box testing
 Testers provide the system with inputs and

observe the outputs
̶ They can see none of:

• The source code
• The internal data
• Any of the design documentation describing the

system’s internals

University of Toronto 8

CSC301: Introduction to Software Engineering

Equivalence classes
̶ It is inappropriate to test by brute force, using every possible

input value
• Takes a huge amount of time
• Is impractical
• Is pointless!

̶ You should divide the possible inputs into groups which you
believe will be treated similarly by all algorithms.

• Such groups are called equivalence classes.
• A tester needs only to run one test per equivalence class
• The tester has to

 understand the required input,
 appreciate how the software may have been designed

University of Toronto 9

CSC301: Introduction to Software Engineering

Examples of equivalence classes
̶ Valid input is a month number (1-12)

• Equivalence classes are: [-∞..0], [1..12], [13.. ∞]

̶ Valid input is one of ten strings representing a type of
fuel

• Equivalence classes are
 10 classes, one for each string
A class representing all other strings

University of Toronto 10

CSC301: Introduction to Software Engineering

Combinations of equivalence classes
̶ Combinatorial explosion means that you cannot

realistically test every possible system-wide
equivalence class.

• If there are 4 inputs with 5 possible values there
are 54 (i.e. 625) possible system-wide equivalence
classes.

̶ You should first make sure that at least one test is run
with every equivalence class of every individual input.

̶ You should also test all combinations where an input
is likely to affect the interpretation of another.

̶ You should test a few other random combinations of
equivalence classes.

University of Toronto 11

CSC301: Introduction to Software Engineering

Example equivalence class combinations
̶ One valid input is either ‘Metric’ or ‘US/Imperial’

• Equivalence classes are:
Metric, US/Imperial, Other

̶ Another valid input is maximum speed: 1 to 750 km/h or
1 to 500 mph

• Validity depends on whether metric or US/imperial
• Equivalence classes are:

 [-∞..0], [1..500], [501..750], [751.. ∞]
̶ Some test combinations

Metric, [1..500]
US/Imperial, [1..500]
Metric, [501..750]

University of Toronto 12

CSC301: Introduction to Software Engineering

Testing at boundaries of equivalence classes
̶ More errors in software occur at the boundaries of

equivalence classes
̶ The idea of equivalence class testing should be

expanded to specifically test values at the extremes
of each equivalence class

• E.g. The number 0 often causes problems

̶ E.g.: If the valid input is a month number (1-12)
• Test equivalence classes as before
• Test 0, 1, 12 and 13 as well as very large positive

and negative values

University of Toronto 13

CSC301: Introduction to Software Engineering

Detecting specific categories of defects
 A tester must try to uncover any defects the

other software engineers might have introduced.
̶ This means designing tests that explicitly try to catch

a range of specific types of defects that commonly
occur

University of Toronto 14

CSC301: Introduction to Software Engineering

Defects in Ordinary Algorithms
1) Incorrect logical conditions

̶ Defect:
• The logical conditions that govern looping and if-then-

else statements are wrongly formulated.
̶ Testing strategy:

• Use equivalence class and boundary testing.
• Consider as an input each variable used in a rule or

logical condition.

University of Toronto 15

CSC301: Introduction to Software Engineering

Example of logical conditions
̶ The landing gear must be deployed whenever the plane is within 2 minutes from

landing or takeoff, or within 2000 feet from the ground. If visibility is less than
1000 feet, then the landing gear must be deployed whenever the plane is within
3 minutes from landing or lower than 2500 feet

University of Toronto 16

CSC301: Introduction to Software Engineering

Defects in Ordinary Algorithms
2) Performing a calculation in the wrong part of a control

construct
̶ Defect:

• The program performs an action when it should not, or does
not perform an action when it should.

• Typically caused by inappropriately excluding or including the
action from a loop or a if construct.

̶ Testing strategies:
• Design tests that execute each loop zero times, exactly once,

and more than once.
• Anything that could happen while looping is made to occur on

the first, an intermediate, and the last iteration.

University of Toronto 17

CSC301: Introduction to Software Engineering

Defects in Ordinary Algorithms
3) Not terminating a loop or recursion

̶ Defect:
• A loop or a recursion does not always terminate,

i.e. it is ‘infinite’.


̶ Testing strategies:
• Analyse what causes a repetitive action to be

stopped.
• Run test cases that you anticipate might not be

handled correctly.

University of Toronto 18

CSC301: Introduction to Software Engineering

Defects in Ordinary Algorithms
4) Not setting up the correct preconditions for an

algorithm
̶ Defect:

• Preconditions state what must be true before the
algorithm should be executed.

• A defect would exist if a program proceeds to do
its work, even when the preconditions are not
satisfied.

̶ Testing strategy:
• Run test cases in which each precondition is not

satisfied.

University of Toronto 19

CSC301: Introduction to Software Engineering

Defects in Ordinary Algorithms

5) Not handling null conditions
̶ Defect:

• A null condition is a situation where there normally
are one or more data items to process, but
sometimes there are none.

• It is a defect when a program behaves abnormally
when a null condition is encountered.

̶ Testing strategy:
• Brainstorm to determine unusual conditions and

run appropriate tests.

University of Toronto 20

CSC301: Introduction to Software Engineering

Defects in Ordinary Algorithms
6) Not handling singleton or non-singleton conditions

̶ Defect:
• A singleton condition occurs when there is normally

more than one of something, but sometimes there is
only one.

• A non-singleton condition is the inverse.
• Defects occur when the unusual case is not properly

handled.

̶ Testing strategy:
• Brainstorm to determine unusual conditions and run

appropriate tests.

University of Toronto 21

CSC301: Introduction to Software Engineering

Defects in Ordinary Algorithms

7) Off-by-one errors
̶ Defect:

• A program inappropriately adds or subtracts one.
• Or loops one too many times or one too few times.
• This is a particularly common type of defect.



̶ Testing strategy:
• Develop tests in which you verify that the program:

 computes the correct numerical answer.
 performs the correct number of iterations.

University of Toronto 22

CSC301: Introduction to Software Engineering

Defects in Ordinary Algorithms
8) Operator precedence errors

̶ Defect:
• An operator precedence error occurs when a programmer omits

needed parentheses, or puts parentheses in the wrong place.
• Operator precedence errors are often extremely obvious...

 but can occasionally lie hidden until special conditions arise.
• E.g. If x*y+z should be x*(y+z) this would be hidden if z was

normally zero.
̶ Testing:

• In software that computes formulae, run tests that anticipate such
defects.

University of Toronto 23

CSC301: Introduction to Software Engineering

Defects in Ordinary Algorithms
9) Use of inappropriate standard algorithms

̶ Defect:
• An inappropriate standard algorithm is one that is

unnecessarily inefficient or has some other
property that is widely recognized as being bad.



̶ Testing strategies:
• The tester has to know the properties of algorithms

and design tests that will determine whether any
undesirable algorithms have been implemented.

University of Toronto 24

CSC301: Introduction to Software Engineering

Example of inappropriate standard algorithms

̶ An inefficient sort algorithm
• The most classical ‘bad’ choice of algorithm is

sorting using a so-called ‘bubble sort’
̶ An inefficient search algorithm

• Ensure that the search time does not increase
unacceptably as the list gets longer

• Check that the position of the searched item does
not have a noticeable impact on search time.

̶ A search or sort that is case sensitive when it should
not be, or vice versa

University of Toronto 25

CSC301: Introduction to Software Engineering

Defects in Numerical Algorithms

10) Not using enough bits or digits
̶ Defect:

• A system does not use variables capable of
representing the largest values that could be
stored.

• When the capacity is exceeded, an unexpected
exception is thrown, or the data stored is incorrect.



̶ Testing strategies:
• Test using very large numbers to ensure the

system has a wide enough margin of error.

University of Toronto 26

CSC301: Introduction to Software Engineering

Defects in Numerical Algorithms
11) Not using enough places after the decimal

point or significant figures
̶ Defects:

• A floating point value might not have the capacity
to store enough significant figures.

• A fixed point value might not store enough places
after the decimal point.

• A typical manifestation is excessive rounding.
̶ Testing strategies:

• Perform calculations that involve many significant
figures, and large differences in magnitude.

• Verify that the calculated results are correct.

University of Toronto 27

CSC301: Introduction to Software Engineering

Defects in Numerical Algorithms
12) Ordering operations poorly so errors build up

̶ Defect:
• A large number does not store enough significant

figures to be able to accurately represent the
result.

̶ Testing strategies:
• Make sure the program works with inputs that have

large positive and negative exponents.
• Have the program work with numbers that vary a

lot in magnitude.
Make sure computations are still accurately

performed.

University of Toronto 28

CSC301: Introduction to Software Engineering

Defects in Numerical Algorithms
13) Assuming a floating point value will be exactly

equal to some other value
̶ Defect:

• If you perform an arithmetic calculation on a
floating point value, then the result will very rarely
be computed exactly.

• To test equality, you should always test if it is
within a small range around that value.

̶ Testing strategies:
• Standard boundary testing should detect this type

of defect.

University of Toronto 29

CSC301: Introduction to Software Engineering

Defects in Timing and Co-ordination
1) Deadlock and livelock

̶ Defects:
• A deadlock is a situation where two or more threads are

stopped, waiting for each other to do something.
 The system is hung

• Livelock is similar, but now the system can do some
computations, but can never get out of some states.

University of Toronto 30

CSC301: Introduction to Software Engineering

Defects in Timing and Co-ordination
 Deadlock and livelock

̶ Testing strategies:
• Deadlocks and livelocks occur due to unusual

combinations of conditions that are hard to
anticipate or reproduce.

• It is often most effective to use inspection to detect
such defects, rather than testing alone.

• However, when testing:
Vary the time consumption of different threads.
Run a large number of threads concurrently.
Deliberately deny resources to one or more

threads.

University of Toronto 31

CSC301: Introduction to Software Engineering

Example of deadlock

University of Toronto 32

CSC301: Introduction to Software Engineering

Defects in Timing and Co-ordination

2) Critical races
̶ Defects:

• One thread experiences a failure because another
thread interferes with the ‘normal’ sequence of
events.

̶ Testing strategies:
• It is particularly hard to test for critical races using

black box testing alone.
• One possible, although invasive, strategy is to

deliberately slow down one of the threads.
• Use inspection.

University of Toronto 33

CSC301: Introduction to Software Engineering

Example of critical race

a) Normal b) Abnormal due to delay in thread A

University of Toronto 34

CSC301: Introduction to Software Engineering

Semaphore and synchronization

 Critical races can be prevented by locking data
so that they cannot be accessed by other
threads when they are not ready
̶ One widely used locking mechanism is called a

semaphore.
̶ In Java, the synchronized keyword can be used.

• It ensures that no other thread can access an
object until the synchronized method terminates.

University of Toronto 35

CSC301: Introduction to Software Engineering

Example of a synchronized method

a) Abnormal: The value put by
thread A is immediately

overwritten by the value put
by thread B.

b) The problem has been solved
by accessing the data using
synchronized methods

University of Toronto 36

CSC301: Introduction to Software Engineering

Defects in Handling Stress and Unusual
Situations
1) Insufficient throughput or response time on

minimal configurations
̶ Defect:

• On a minimal configuration, the system’s throughput
or response time fail to meet requirements.

̶ Testing strategy:
• Perform testing using minimally configured

platforms.

University of Toronto 37

CSC301: Introduction to Software Engineering

Defects in Handling Stress and Unusual
Situations
2) Incompatibility with specific configurations of

hardware or software
̶ Defect:

• The system fails if it is run using particular
configurations of hardware, operating systems and
external libraries.

̶ Testing strategy:
• Extensively execute the system with all possible

configurations that might be encountered by users.

University of Toronto 38

CSC301: Introduction to Software Engineering

Defects in Handling Stress and Unusual
Situations

3) Defects in handling peak loads or missing resources
̶ Defects:

• The system does not gracefully handle resource
shortage.

• Resources that might be in short supply include:
memory, disk space or network bandwidth,

permission.
• The program being tested should report the problem in

a way the user will understand.
̶ Testing strategies:

• Devise a method of denying the resources.
• Run a very large number of copies of the program being

tested, all at the same time.

University of Toronto 39

CSC301: Introduction to Software Engineering

Defects in Handling Stress and Unusual
Situations

4) Inappropriate management of resources
̶ Defect:

• A program uses certain resources but does not
make them available when it no longer needs
them.

̶ Testing strategy:
• Run the program intensively in such a way that it

uses many resources, relinquishes them and then
uses them again repeatedly.

University of Toronto 40

CSC301: Introduction to Software Engineering

Defects in Handling Stress and Unusual
Situations

5) Defects in the process of recovering from a crash
̶ Defects:

• Any system will undergo a sudden failure if its
hardware fails, or if its power is turned off.

• It is a defect if the system is left in an unstable state
and hence is unable to fully recover.

• It is also a defect if a system does not correctly deal
with the crashes of related systems.

̶ Testing strategies:
• Kill a program at various times during execution.
• Try turning the power off, however operating systems

themselves are often intolerant of doing that.

University of Toronto 41

CSC301: Introduction to Software Engineering

Documentation defects
̶ Defect:

• The software has a defect if the user manual,
reference manual or on-line help:
 gives incorrect information
 fails to give information relevant to a problem.

̶ Testing strategy:
• Examine all the end-user documentation, making

sure it is correct.
• Work through the use cases, making sure that

each of them is adequately explained to the user.

University of Toronto 42

CSC301: Introduction to Software Engineering

Writing Formal Test Cases and Test Plans

 A test case is an explicit set of instructions
designed to detect a particular class of defect in
a software system.
̶ A test case can give rise to many tests.
̶ Each test is a particular running of the test case on a

particular version of the system.

University of Toronto 43

CSC301: Introduction to Software Engineering

Test plans
 A test plan is a document that contains a complete set of test cases

for a system
• Along with other information about the testing process.

̶ The test plan is one of the standard forms of documentation.
̶ If a project does not have a test plan:

• Testing will inevitably be done in an ad-hoc manner.
• Leading to poor quality software.

̶ The test plan should be written long before the testing starts.
̶ You can start to develop the test plan once you have developed

the requirements.

University of Toronto 44

CSC301: Introduction to Software Engineering

Information to include in a formal test case
A. Identification and classification:

• Each test case should have a number, and may also be given a
descriptive title.

• The system, subsystem or module being tested should also be clearly
indicated.

• The importance of the test case should be indicated.
B. Instructions:

• Tell the tester exactly what to do.
• The tester should not normally have to refer to any documentation in order

to execute the instructions.
C. Expected result:

• Tells the tester what the system should do in response to the instructions.
• The tester reports a failure if the expected result is not encountered.

D. Cleanup (when needed):
• Tells the tester how to make the system go ‘back to normal’ or shut down

after the test.

University of Toronto 45

CSC301: Introduction to Software Engineering

Levels of importance of test cases
̶ Level 1:

• First pass critical test cases.
• Designed to verify the system runs and is safe.
• No further testing is possible.

̶ Level 2:
• General test cases.
• Verify that day-to-day functions correctly.
• Still permit testing of other aspects of the system.

̶ Level 3:
• Detailed test cases.
• Test requirements that are of lesser importance.
• The system functions most of the time but has not yet

met quality objectives.

University of Toronto 46

CSC301: Introduction to Software Engineering

Detailed Example: Test cases for Phase 2
of the SimpleChat

General Setup for Test Cases in the 2000 Series
System: SimpleChat/OCSF Phase: 2

Instructions:

1. Install Java, minimum release 1.2.0, on Windows 95, 98 or
ME.

2. Install Java, minimum release 1.2.0, on Windows NT or 2000.
3. Install Java, minimum release 1.2.0, on a Solaris system.
4. Install the SimpleChat - Phase 2 on each of the above

platforms.

University of Toronto 47

CSC301: Introduction to Software Engineering

Test cases for Phase 2 of the SimpleChat
Test Case 2001
System: SimpleChat Phase: 2
Server startup check with default arguments
Severity: 1

Instructions:
1. At the console, enter: java EchoServer.

Expected result:
1. The server reports that it is listening for clients by displaying the
following message:

Server listening for clients on port 5555
2. The server console waits for user input.

Cleanup:
1. Hit CTRL+C to kill the server.

University of Toronto 48

CSC301: Introduction to Software Engineering

Test cases for Phase 2 of the SimpleChat
Test Case 2002
System: SimpleChat Phase: 2
Client startup check without a login
Severity: 1

Instructions:
1. At the console, enter: java ClientConsole.

Expected result:
1. The client reports it cannot connect without a login by displaying:

ERROR - No login ID specified. Connection aborted.
2. The client terminates.

Cleanup: (if client is still active)
1. Hit CTRL+C to kill the client.

University of Toronto 49

CSC301: Introduction to Software Engineering

Test cases for Phase 2 of the SimpleChat
Test Case 2003
System: SimpleChat Phase: 2
Client startup check with a login and without a server
Severity: 1

Instructions:
1. At the console, enter: java ClientConsole <loginID>

where <loginID> is the name you wish to be identified by.

Expected result:
1. The client reports it cannot connect to a server by displaying:

Cannot open connection. Awaiting command.
2. The client waits for user input

Cleanup: (if client is still active)
1. Hit CTRL+C to kill the client.

University of Toronto 50

CSC301: Introduction to Software Engineering

Test cases for Phase 2 of the SimpleChat
Test Case 2007
System: SimpleChat Phase: 2
Server termination command check
Severity: 2

Instructions:
1. Start a server (Test Case 2001 instruction 1) using default
arguments.
2. Type #quit into the server's console.

Expected result:
1. The server quits.

Cleanup (If the server is still active):
1. Hit CTRL+C to kill the server.

University of Toronto 51

CSC301: Introduction to Software Engineering

Test cases for Phase 2 of the SimpleChat
Test Case 2013
System: SimpleChat Phase: 2
Client host and port setup commands check
Severity: 2

Instructions:
1. Start a client without a server (Test Case 2003).
2. At the client's console, type #sethost <newhost> where
<newhost> is the name of a computer on the network
3. At the client’s console, type #setport 1234.

Expected result:
1. The client displays
Host set to: <newhost>
Port set to: 1234.

Cleanup:
1. Type #quit to kill the client.

University of Toronto 52

CSC301: Introduction to Software Engineering

Test cases for Phase 2 of the SimpleChat
Test Case 2019
System: SimpleChat Phase: 2
Different platform tests
Severity: 3

Instructions:
1. Repeat test cases 2001 to 2018 on Windows 95, 98, NT or 2000, and
Solaris

Expected results:
1. The same as before.

University of Toronto 53

CSC301: Introduction to Software Engineering

Determining test cases by enumerating
attributes
 It is important that the test cases test every

aspect of the requirements.
̶ Each detail in the requirements is called an attribute.

• An attribute can be thought of as something that is
testable.

• A good first step when creating a set of test cases
is to enumerate the attributes.

• A way to enumerate attributes is to circle all the
important points in the requirements document.

̶ However there are often many attributes that are
implicit.

University of Toronto 54

CSC301: Introduction to Software Engineering

Strategies for Testing Large Systems
 Big bang testing versus integration testing

̶ In big bang testing, you take the entire system and
test it as a unit

̶ A better strategy in most cases is incremental testing:
• You test each individual subsystem in isolation
• Continue testing as you add more and more

subsystems to the final product
• Incremental testing can be performed horizontally

or vertically, depending on the architecture
Horizontal testing can be used when the

system is divided into separate sub-
applications

University of Toronto 55

CSC301: Introduction to Software Engineering

Top down testing
̶ Start by testing just the user interface.
̶ The underlying functionality are simulated by stubs.

• Pieces of code that have the same interface as the
lower level functionality.

• Do not perform any real computations or
manipulate any real data.

̶ Then you work downwards, integrating lower and
lower layers.

̶ The big drawback to top down testing is the cost of
writing the stubs.

University of Toronto 56

CSC301: Introduction to Software Engineering

Bottom-up testing
̶ Start by testing the very lowest levels of the software.
̶ You needs drivers to test the lower layers of software.

• Drivers are simple programs designed specifically
for testing that make calls to the lower layers.

̶ Drivers in bottom-up testing have a similar role to
stubs in top-down testing, and are time-consuming to
write.

University of Toronto 57

CSC301: Introduction to Software Engineering

Sandwich testing
̶ Sandwich testing is a hybrid between bottom-up and

top down testing.
̶ Test the user interface in isolation, using stubs.
̶ Test the very lowest level functions, using drivers.
̶ When the complete system is integrated, only the

middle layer remains on which to perform the final set
of tests.

University of Toronto 58

CSC301: Introduction to Software Engineering

Vertical strategies for incremental integration
testing

University of Toronto 59

CSC301: Introduction to Software Engineering

The test-fix-test cycle
 When a failure occurs during testing:

̶ Each failure report is entered into a failure tracking
system.

̶ It is then screened and assigned a priority.
̶ Low-priority failures might be put on a known bugs list

that is included with the software’s release notes.
̶ Some failure reports might be merged if they appear

to result from the same defects.
̶ Somebody is assigned to investigate a failure.
̶ That person tracks down the defect and fixes it.
̶ Finally a new version of the system is created, ready

to be tested again.

University of Toronto 60

CSC301: Introduction to Software Engineering

The ripple effect

 There is a high probability that the efforts to
remove the defects may have actually added
new defects
̶ The maintainer tries to fix problems without fully

understanding the ramifications of the changes
̶ The maintainer makes ordinary human errors
̶ The system regresses into a more and more failure-

prone state

University of Toronto 61

CSC301: Introduction to Software Engineering

Regression testing
̶ It tends to be far too expensive to re-run every single test

case every time a change is made to software.
̶ Hence only a subset of the previously-successful test

cases is actually re-run.
̶ This process is called regression testing.

• The tests that are re-run are called regression tests.
̶ Regression test cases are carefully selected to cover as

much of the system as possible.

 The “law of conservation of bugs”:
̶ The number of bugs remaining in a large system is

proportional to the number of bugs already fixed

University of Toronto 62

CSC301: Introduction to Software Engineering

Deciding when to stop testing
̶ All of the level 1 test cases must have been

successfully executed.
̶ Certain pre-defined percentages of level 2 and level 3

test cases must have been executed successfully.
̶ The targets must have been achieved and are

maintained for at least two cycles of ‘builds’.
• A build involves compiling and integrating all the

components.
• Failure rates can fluctuate from build to build as:

Different sets of regression tests are run.
New defects are introduced.

University of Toronto 63

CSC301: Introduction to Software Engineering

The roles of people involved in testing
̶ The first pass of unit and integration testing is called

developer testing
• Preliminary testing performed by the software

developers who do the design.

̶ Independent testing is performed by a separate group.
• They do not have a vested interest in seeing as many

test cases pass as possible.
• They develop specific expertise in how to do good

testing, and how to use testing tools.

University of Toronto 64

CSC301: Introduction to Software Engineering

Testing performed by users and clients
̶ Alpha testing

• Performed by the user or client, but under the
supervision of the software development team.

̶ Beta testing
• Performed by the user or client in a normal work

environment.
• Recruited from the potential user population.
• An open beta release is the release of low-quality

software to the general population.
̶ Acceptance testing

• Performed by users and customers.
• However, the customers do it on their own

initiative.

University of Toronto 65

CSC301: Introduction to Software Engineering

Inspections

 An inspection is an activity in which one or more
people systematically
̶ Examine source code or documentation, looking for

defects.
̶ Normally, inspection involves a meeting...

• Although participants can also inspect alone at
their desks.

University of Toronto 66

CSC301: Introduction to Software Engineering

Roles on inspection teams
̶ The author
̶ The moderator.

• Calls and runs the meeting.
• Makes sure that the general principles of inspection are

adhered to.
̶ The secretary.

• Responsible for recording the defects when they are found.
• Must have a thorough knowledge of software engineering.

̶ Paraphrasers.
• Step through the document explaining it in their own words.

University of Toronto 67

CSC301: Introduction to Software Engineering

Principles of inspecting
1) Inspect the most important documents of all types

• code, design documents, test plans and
requirements

2) Choose an effective and efficient inspection team
• between two and five people
• Including experienced software engineers

3) Require that participants prepare for inspections
• They should study the documents prior to the

meeting and come prepared with a list of defects
4) Only inspect documents that are ready

• Attempting to inspect a very poor document will
result in defects being missed

University of Toronto 68

CSC301: Introduction to Software Engineering

Principles of inspecting
5) Avoid discussing how to fix defects

• Fixing defects can be left to the author
6) Avoid discussing style issues

• Issues like are important, but should be discussed
separately

7) Do not rush the inspection process
• A good speed to inspect is

 200 lines of code per hour (including
comments)

 or ten pages of text per hour

University of Toronto 69

CSC301: Introduction to Software Engineering

Principles of inspecting
8) Avoid making participants tired

• It is best not to inspect for more than two hours at
a time, or for more than four hours a day

9) Keep and use logs of inspections
• You can also use the logs to track the quality of the

design process
10) Re-inspect when changes are made

• You should re-inspect any document or code that
is changed more than 20%

University of Toronto 70

CSC301: Introduction to Software Engineering

A peer-review process

 Managers are normally not involved
̶ This allows the participants to express their criticisms

more openly, not fearing repercussions
̶ The members of an inspection team should feel they

are all working together to create a better document
̶ Nobody should be blamed

	CSC301: Introduction to �Software Engineering��Lecture 8
	Software Testing
	Basic definitions
	Effective and Efficient Testing
	Glass-box testing
	Flow graph for glass-box testing
	Flow graph for glass-box testing
	Black-box testing
	Equivalence classes
	Examples of equivalence classes
	Combinations of equivalence classes
	Example equivalence class combinations
	Testing at boundaries of equivalence classes
	Detecting specific categories of defects
	Defects in Ordinary Algorithms
	Example of logical conditions
	Defects in Ordinary Algorithms
	Defects in Ordinary Algorithms
	Defects in Ordinary Algorithms
	Defects in Ordinary Algorithms
	Defects in Ordinary Algorithms
	Defects in Ordinary Algorithms
	Defects in Ordinary Algorithms
	Defects in Ordinary Algorithms
	Example of inappropriate standard algorithms
	Defects in Numerical Algorithms
	Defects in Numerical Algorithms
	Defects in Numerical Algorithms
	Defects in Numerical Algorithms
	Defects in Timing and Co-ordination
	Defects in Timing and Co-ordination
	Example of deadlock
	Defects in Timing and Co-ordination
	Example of critical race
	Semaphore and synchronization
	Example of a synchronized method
	Defects in Handling Stress and Unusual Situations
	Defects in Handling Stress and Unusual Situations
	Defects in Handling Stress and Unusual Situations
	Defects in Handling Stress and Unusual Situations
	Defects in Handling Stress and Unusual Situations
	Documentation defects
	Writing Formal Test Cases and Test Plans
	Test plans
	Information to include in a formal test case
	Levels of importance of test cases
	Detailed Example: Test cases for Phase 2 of the SimpleChat
	Test cases for Phase 2 of the SimpleChat
	Test cases for Phase 2 of the SimpleChat
	Test cases for Phase 2 of the SimpleChat
	Test cases for Phase 2 of the SimpleChat
	Test cases for Phase 2 of the SimpleChat
	Test cases for Phase 2 of the SimpleChat
	Determining test cases by enumerating attributes
	Strategies for Testing Large Systems
	Top down testing
	Bottom-up testing
	Sandwich testing
	Vertical strategies for incremental integration testing
	The test-fix-test cycle
	The ripple effect
	Regression testing
	Deciding when to stop testing
	The roles of people involved in testing
	Testing performed by users and clients
	Inspections
	Roles on inspection teams
	Principles of inspecting
	Principles of inspecting
	Principles of inspecting
	A peer-review process

