
University of Toronto 0

CSC301: Introduction to
Software Engineering

Lecture 9

Wael Aboulsaadat

University of Toronto 1

Software Testing

University of Toronto 2

CSC301: Introduction to Software Engineering

Conducting an inspection meeting
 1. The moderator calls the meeting and distributes the

documents.
 2. The participants prepare for the meeting in advance.
 3. At the start of the meeting, the moderator explains the

procedures and verifies that everybody has prepared.
 4. Paraphrasers take turns explaining the contents of the

document or code, without reading it verbatim.
̶ Requiring that the paraphraser not be the author ensures that

the paraphraser say what he or she sees, not what the author
intended to say.

 5. Everybody speaks up when they notice a defect.

University of Toronto 3

CSC301: Introduction to Software Engineering

Inspecting compared to testing

̶ Both testing and inspection rely on different aspects of
human intelligence.

̶ Testing can find defects whose consequences are
obvious but which are buried in complex code.

̶ Inspecting can find defects that relate to
maintainability or efficiency.

̶ The chances of mistakes are reduced if both activities
are performed.

University of Toronto 4

CSC301: Introduction to Software Engineering

Testing or inspecting, which comes first?
̶ It is important to inspect software before extensively

testing it.
̶ The reason for this is that inspecting allows you to

quickly get rid of many defects.
̶ If you test first, and inspectors recommend that

redesign is needed, the testing work has been
wasted.

• There is a growing consensus that it is most
efficient to inspect software before any testing is
done.

̶ Even before developer testing

University of Toronto 5

CSC301: Introduction to Software Engineering

Quality Assurance in General

 Root cause analysis
̶ Determine whether problems are caused by such

factors as
• Lack of training
• Schedules that are too tight
• Building on poor designs or reusable technology

University of Toronto 6

CSC301: Introduction to Software Engineering

Measure quality and strive for continual
improvement
 Things you can measure regarding the quality of a

software product, and indirectly of the quality of the
process
̶ The number of failures encountered by users.
̶ The number of failures found when testing a product.
̶ The number of defects found when inspecting a product.
̶ The percentage of code that is reused.

• More is better, but don’t count clones.
̶ The number of questions posed by users to the help desk.

• As a measure of usability and the quality of
documentation.

University of Toronto 7

CSC301: Introduction to Software Engineering

Post-mortem analysis
 Looking back at a project after it is complete, or

after a release,
̶ You look at the design and the development process
̶ Identify those aspects which, with benefit of hindsight,

you could have done better
̶ You make plans to do better next time

University of Toronto 8

CSC301: Introduction to Software Engineering

Process standards
 The personal software process (PSP):

̶ Defines a disciplined approach that a developer can use to improve the
quality and efficiency of his or her personal work.

̶ One of the key tenets is personally inspecting your own work.
 The team software process (TSP):

̶ Describes how teams of software engineers can work together
effectively.

 The software capability maturity model (CMM):
̶ Contains five levels, Organizations start in level 1, and as their

processes become better they can move up towards level 5.
 ISO 9000-2:

̶ An international standard that lists a large number of things an
organization should do to improve their overall software process.

University of Toronto 9

CSC301: Introduction to Software Engineering

Difficulties and Risks in Quality Assurance

1) It is very easy to forget to test some aspects of a
software system:

• ‘running the code a few times’ is not enough.
• Forgetting certain types of tests diminishes the

system’s quality.

2) There is a conflict between achieving adequate
quality levels, and ‘getting the product out of the
door’

• Create a separate department to oversee QA.
• Publish statistics about quality.
• Build adequate time for all activities.

University of Toronto 10

CSC301: Introduction to Software Engineering

Difficulties and Risks in Quality Assurance

3) People have different abilities and knowledge
when it comes to quality

• Give people tasks that fit their natural
personalities.

• Train people in testing and inspecting techniques.
• Give people feedback about their performance in

terms of producing quality software.
• Have developers and maintainers work for several

months on a testing team.

University of Toronto 11

Software Project Management and
Organization

University of Toronto 12

CSC301: Introduction to Software Engineering

Skills needed on a team
̶ Architect
̶ Project manager
̶ Configuration management and build specialist
̶ User interface specialist
̶ Development

• Technology specialists
• Hardware and third-party software specialist
• Team Leader

̶ User documentation specialist
̶ Tester

University of Toronto 13

CSC301: Introduction to Software Engineering

Building Software Engineering Teams

 Software engineering is a human process.
̶ Choosing appropriate people for a team, and

assigning roles and responsibilities to the team
members, is therefore an important project
management skill

̶ Software engineering teams can be organized in
many different ways

University of Toronto 14

CSC301: Introduction to Software Engineering

Software engineering teams
 Egoless team:

̶ In such a team everybody is equal, and the team
works together to achieve a common goal.

̶ Decisions are made by consensus.
̶ Most suited to difficult projects with many technical

challenges.

University of Toronto 15

CSC301: Introduction to Software Engineering

Software engineering teams

 Hierarchical manager-subordinate structure:
̶ Each individual reports to a manager and is

responsible for performing the tasks delegated by that
manager.

̶ Suitable for large projects with a strict schedule where
everybody is well-trained and has a well-defined role.

̶ However, since everybody is only responsible for their
own work, problems may go unnoticed.

University of Toronto 16

CSC301: Introduction to Software Engineering

Software engineering teams
 Chief programmer team:

̶ Midway between egoless and hierarchical.
̶ The chief programmer leads and guides the project.
̶ He or she consults with, and relies on, individual

specialists.

University of Toronto 17

CSC301: Introduction to Software Engineering

Choosing an effective size for a team
̶ For a given estimated development effort, in person

months, there is an optimal team size.

̶ Subsystems and teams should be sized such that the
total amount of required knowledge and exchange of
information is reduced.

̶ For a given project or project iteration, the number of
people on a team will not be constant.

University of Toronto 18

CSC301: Introduction to Software Engineering

Project Scheduling and Tracking
̶ Scheduling is the process of deciding:

• In what sequence a set of activities will be
performed.

• When they should start and be completed.

̶ Tracking is the process of determining how well you
are sticking to the cost estimate and schedule.

̶ Project Planning techniques:
• WBS charts
• PERT charts
• Gantt charts

University of Toronto 19

CSC301: Introduction to Software Engineering

Work breakdown structure (WBS) chart
 Hierarchical decomposition of a project into subtasks

̶ Shows how tasks are decomposed into subtasks
̶ Does not show duration
̶ Does not show precedence relations (e.g. task A must be

finished before task B can start)

University of Toronto 20

CSC301: Introduction to Software Engineering

PERT charts

 PERT chart (Program Evaluation and Review Technique)
 A network (graph) where the nodes represent tasks and arrows

describe precedence relations
̶ Used successfully in management of Polaris missile project in 50’s
̶ Shows task duration (on the task node)
̶ Shows precedence relations
̶ Generally does not show task decomposition

University of Toronto 21

CSC301: Introduction to Software Engineering

Example of a PERT chart

University of Toronto 22

CSC301: Introduction to Software Engineering

Gantt charts

 A graphical visualization of a schedule, where the time span for
each activity is depicted by the length of a segment drawn on an
adjacent calendar
̶ Generally does not show task decomposition
̶ Does not show duration, only the time span over which the task is

scheduled
̶ Does not show precedence relations
̶ Can show activity of multiple developers in parallel
̶ Makes it easy to monitor a project’s progress and expenditures

University of Toronto 23

CSC301: Introduction to Software Engineering

Example of a Gantt chart

̶ One axis shows time.
̶ The other axis shows the activities that will be performed.
̶ The black bars are the top-level tasks.
̶ The white bars are subtasks
̶ The diamonds are milestones

University of Toronto 24

CSC301: Introduction to Software Engineering

Contents of a Project Plan

A. Purpose
B. Background information
C. Processes to be used
D. Subsystems and planned releases
E. Risks and challenges
F. Tasks
G. Cost estimates
H. Team
I. Schedule and milestones

University of Toronto 25

CSC301: Introduction to Software Engineering

Difficulties and Risks in Project Management
̶ Accurately estimating costs is a constant

challenge
• Follow the cost estimation guidelines.

̶ It is very difficult to measure progress and meet
deadlines

• Improve your cost estimation skills so as to
account for the kinds of problems that may occur.

• Develop a closer relationship with other members
of the team.

• Be realistic in initial requirements gathering, and
follow an iterative approach.

• Use earned value charts to monitor progress.

University of Toronto 26

CSC301: Introduction to Software Engineering

Difficulties and Risks in Project Management

̶ It is difficult to deal with lack of human
resources or technology needed to
successfully run a project

• When determining the requirements and the
project plan, take into consideration the
resources available.

• If you cannot find skilled people or suitable
technology then you must limit the scope of
your project.

University of Toronto 27

CSC301: Introduction to Software Engineering

Difficulties and Risks in Project Management

̶ Communicating effectively in a large project is hard
• Take courses in communication, both written and oral.
• Learn how to run effective meetings.
• Review what information everybody should have, and

make sure they have it.
• Make sure that project information is readily available.
• Use ‘groupware’ technology to help people exchange

the information they need to know

University of Toronto 28

CSC301: Introduction to Software Engineering

Difficulties and Risks in Project Management
̶ It is hard to obtain agreement and commitment

from others
• Take courses in negotiating skills and leadership.
• Ensure that everybody understands

 The position of everybody else.
 The costs and benefits of each alternative.
 The rationale behind any compromises.

• Ensure that everybody’s proposed responsibility is
clearly expressed.

• Listen to everybody’s opinion, but take assertive
action, when needed, to ensure progress occurs.

University of Toronto 29

Revisiting Software Estimation

University of Toronto 30

CSC301: Introduction to Software Engineering

Software Cost Estimation Methods
 Cost estimation: prediction of both the

person-effort and elapsed time of a project

 Methods:
̶ Algorithmic
̶ Expert judgement
̶ Estimation by analogy
̶ …

 Best approach is a combination of methods
̶ compare and iterate estimates, reconcile differences

 COCOMO is the most widely used, thoroughly
documented and calibrated cost model

University of Toronto 31

CSC301: Introduction to Software Engineering

The COCOMO model

 Constructive Cost Model
 An empirical model based on project experience
 Well-documented, ‘independent’ model which is not

tied to a specific software vendor
 Long history from initial version published in 1981

(COCOMO-81) through various instantiations to
COCOMO 2

 COCOMO 2 takes into account different
approaches to software development, reuse, etc.

University of Toronto 32

CSC301: Introduction to Software Engineering

Feb 1st 2006

System Feasibility

Software Plans
& Requirements

Software Design

Programming

Integration &
Testing

Implementation

Maintenance

COCOMO provides

effort estimation for

the development phase

only.

University of Toronto 33

CSC301: Introduction to Software Engineering

Feb 1st 2006

Definitions and Assumptions
 DSI (Delivered Source Instructions) is the primary cost

driver. The term ‘delivered’ excludes non-delivered
support software.

 PM (Person-Month) – A COCOMO person-month
consists of 19 days(152hrs) of working time (including
the average time off due to sick leave, holidays, and
vacation).

University of Toronto 34

CSC301: Introduction to Software Engineering

Feb 1st 2006

COCOMO Versions
 Basic, used mostly for rough early estimates.

 Intermediate, is the most commonly used version.
- Incorporates 15 cost drivers to account for software

project cost variations that are not directly related to
project size (i.e., personnel capability, use of modern
tools, hardware constraints etc)

 Detailed, Not used very often
- accounts for the influence of the different factors on

individual project phases..

University of Toronto 35

CSC301: Introduction to Software Engineering

 Organic Type
̶ Relatively small software teams develop familiar types of

software in an in-house environment.
̶ Most of the personnel connected with the project have

previous experience working with related or similar systems in
the organizations.

 Embedded Type
̶ Project may require new technology, unfamiliar algorithms or

an innovative new method of solving a problem.
 Semi-detached Type

̶ An intermediate stage between organic and embedded types
(i.e., either a mixture of organic and embedded type or an
intermediate level of the project characteristics).

COCOMO Development Types

University of Toronto 36

CSC301: Introduction to Software Engineering

Cost Estimation using Basic COCOMO
Type Effort Schedule
Organic PM = 2.4 (KDSI)1.05 TD = 2.5 (PM)0.38

Semi-Detached PM = 3.0 (KDSI)1.12 TD = 2.5 (PM)0.35

Embedded PM = 3.6 (KDSI)1.20 TD = 2.5 (PM)0.32

- PM – person-month
- KDSI – delivered source instructions, in thousands
- TD – number of months estimated for software development

EXAMPLE:
Assumption:

Organic Project with estimated size of 128,000 lines of code.

Effort : PM = 2.4 (128)1.05 = 392 person-months
Productivity: 128,000 DSI/392 PM = 327 DSI/PM
Schedule: TD = 2.5 (392)0.38 = 24 months
Avg. Staffing: 392 PM/ 24 months = 16 PM/TD

University of Toronto 37

CSC301: Introduction to Software Engineering

Cost Estimation using Intermediate COCOMO
 It is a compatible extension to basic COCOMO.
 It provides great accuracy and level of detail which makes it

more suitable for cost estimations in the more detailed stages
of software product definition.

 The intermediate COCOMO exponents for the three software
development types are the same as Basic COCOMO, but the
coefficients are different. The Intermediate development
schedule is determined using the Basic COCOMO schedule
equations.

Type Effort Schedule
Organic PM = 3.2 (KDSI)1.05 TD = 2.5 (PM)0.38

Semi-Detached PM = 3.0 (KDSI)1.12 TD = 2.5 (PM)0.35

Embedded PM = 2.8 (KDSI)1.20 TD = 2.5 (PM)0.32

University of Toronto 38

CSC301: Introduction to Software Engineering

Cost Drivers
 Intermediate COCOMO incorporates 15

predictor variables called Cost Drivers
 These are grouped into 4 categories

- Software Attributes
• Required Software Reliability (RELY)

•Data Base Size (DATA)
•Software Complexity (CPLX)

- Personnel Attributes
•Analyst Capability (ACAP)

•Applications Experience (AEXP)
•Programmer Capability (PCAP)

•Virtual Machine Experience (VEXP)
•Programming Language Experience (LEXP)

- Computer Attributes
•Execution Time Constraint (TIME)

•Main Storage Constraint (STOR)
•Virtual Machine Volatility (VIRT)

•Computer Turnaround Time (TURN)

- Project Attributes
•Use of Modern Programming Practices

(MODP)
•Use of Software Tools (TOOL)

•Schedule Constraint (SCED)

	CSC301: Introduction to �Software Engineering��Lecture 9
	Software Testing
	Conducting an inspection meeting
	Inspecting compared to testing
	Testing or inspecting, which comes first?
	Quality Assurance in General
	Measure quality and strive for continual improvement
	Post-mortem analysis
	Process standards
	Difficulties and Risks in Quality Assurance
	Difficulties and Risks in Quality Assurance
	Software Project Management and Organization
	Skills needed on a team
	Building Software Engineering Teams
	Software engineering teams
	Software engineering teams
	Software engineering teams
	Choosing an effective size for a team
	Project Scheduling and Tracking
	Work breakdown structure (WBS) chart
	�PERT charts
	Example of a PERT chart
	�Gantt charts
	Example of a Gantt chart
	Contents of a Project Plan
	Difficulties and Risks in Project Management
	Difficulties and Risks in Project Management
	Difficulties and Risks in Project Management
	Difficulties and Risks in Project Management
	Revisiting Software Estimation
	Software Cost Estimation Methods
	The COCOMO model
	Slide Number 33
	Definitions and Assumptions
	 COCOMO Versions
	 COCOMO Development Types
	Cost Estimation using Basic COCOMO
	Cost Estimation using Intermediate COCOMO
	Cost Drivers

