
CSC309S Programming on the Web
Assignment 3

Due: 11:59 PM, April 9th, 2009 (worth 10%)
Note: There will be no extensions for this assignment.

Overview

In the first two assignments, you have developed the front-end skeleton and the backend layer of
the media website. In this assignment, you are going to use Java Servlets and JSPs to build the
middle tier layer which connects both ends and you are also going to convert the front-end into a
functioning website.

Description

o Following is a list of screens you are required to develop:
1. Homepage (you are only required to support simple search - Advanced link is

excluded from this assignment).
2. Register
3. Login (you can develop this either using a window or a separate page).
4. My Content (licensed content is excluded)
5. Subscribe to Channel
6. My Subscriptions
7. Accounting (the filter and start/end date are excluded - you can assume that the search

will always be from the start date of the website to the date of today).
o Note that each of the above screens does not necessarily map to one xml

request/response. For example, the homepage could be used to trigger search request or
subscribe request.

o Also, note that some of these screens require the user to be logged-in first.
o Use model-2 architecture with one central servlet and the command design pattern. The

list of commands that your web application supports must be loaded from a configuration
file where the name of the command is mapped to a class name. The name of the
command should be part of the request which the servlet receives. Use reflection to load
the command-implementing class dynamically (see slides 65, 66 and 67 in lecture 10).

o Support concurrency in your webapp by synchronizing on shared resources (see slides
3038 in lecture 10). You are not allowed to use the single-thread model.

o Convert each relevant .html file you’ve developed in assignment 1 to a .jsp file (JSP tags
will be used to initialize the DHTMLX components).

o You are required to support paging of DHTMLX grid-control/accordion-control data;
load a max of 20 rows at a time.

o You can use JSTL tags.

Software
o You will use Tomcat as both the Servlet container and also the web server.

o Tomcat is available from http://tomcat.apache.org/

o The software is already installed on CDF with user privileges at:

/u/csc309h/lib/apache-tomcat-5.5.26

o To assist you in getting your server up and running there are startup files provided in the
assignment section in blackboard (a3-files.rar). Copy the tomcat.tar.gz file to a directory
somewhere under your home directory from which you will be running your tomcat server.
In the rest of this document, we will refer to this directory as $CATALINA_HOME.

o Starting and Stopping Tomcat:

• cd to $CATALINA_HOME/bin
• Run the script start.sh (it is important that you run this file from within the bin

directory)
• Enter the port number you were assigned for running Tomcat. Make sure you only

use your assigned port number (ports file is in assignment folder on blackboard).
Tomcat will use 3 ports, your assigned number and the next two (e.g., if you are
assigned port 32000, tomcat will use 32000, 32001, 32002).

• The start.sh script will create the configuration file conf/server.xml
• To check if your web server is running, issue the command (on CDF): /bin/ps -ef |

grep your_user_id
• You can now point your browser at http://localhost:your_port_number and you

will see the default tomcat page displayed.
• To stop your server, run the bin/stop.sh script. Always remember to stop your

server before logging off CDF.
• You can look through the example servlet pages provided by tomcat.

o Installing and Compiling Servlets

1. Download the sample application from the assignments folder
2. Decompress and untar the file. Then copy the csc309 directory to

$CATALINA_HOME/webapps where $CATALINA_HOME is an environment
variable that points to the directory where you have installed Tomcat (the directory
that contains bin, conf, and webapps).

3. The sample application consists of a single Servlet implemented by the HelloWorld
class

4. To run the servlet follow these steps:
a. Compiling the Java class

1. Include the following jar file in your CLASSPATH
/u/csc309h/lib/tomcat-5.5.26/common/lib/servlet-api.jar

http://tomcat.apache.org/�

This library contains class definitions commonly used by
servlets, such as the HTTPServlet class. Alternatively, add the
commands in a3-evn.txt file to your .cshrc file in your home
directory. For the commands to take effect you will need to
either login again or force your shell to reread the configuration
file by typing source .cshrc

2. cd to $CATALINA_HOME/webapps/csc309/WEB-
INF/classes

3. Compile the servlet by typing: javac HelloWorld.java
b. Start Tomcat
c. Browse to the following URL

http://127.0.0.1:yourPortNumber/csc309/servlet/HelloWorld

o Adding a Servlet to a Web Application

To add the PrintEnv servlet to the csc309 Web Application follow these steps:

1. Copy PrintEnv.java to $CATALINA_HOME/webapps/csc309/WEB-
INF/classes
2. Compile PrintEnv.java
3. Add the following entries to the application descriptor located at

 $CATALINA_HOME/webapps/csc309/WEB-INF/web.xml

 <servlet>
 <servlet-name>PrintEnv</servlet-name>

 <servlet-class>PrintEnv</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>PrintEnv</servlet-name>
 <url-pattern>/servlet/PrintEnv</url-pattern>
 </servlet-mapping>

4. Restart Tomcat
5. Point your browser to

http://127.0.0.1:yourPortNumber/csc309/servlet/PrintEnv

o Debugging Servlets

Debugging servlets is a little more complex than one would hope. In a nutshell, what you
need to do is start Tomcat in debugging mode, and then attach a debugger to the running
instance of Tomcat.

This section describes how to debug servlets using the Java Platform Debugger
Architecture (JPDA) and the NetBeans IDE.

http://java.sun.com/products/jpda/index.jsp�
http://www.netbeans.org/�

To debug the HelloWorld servlet described above follow these steps:

1. Compile the servlet with the -g flag so that the javac compiler generates all
debugging information.

2. Set the environment variable JPDA_ADDRESS to your assigned port number
+ 1000. For example, if your assigned port number is 30901, you can set the
environment variable as follows:

sh-2.05b$ JPDA_ADDRESS=31901
sh-2.05b$ export JPDA_ADDRESS

Tomcat listens on the JPDA_ADDRESS port for debuggers that want to
attach the running servlet container.

3. Start Tomcat in debugging mode using the catalina.sh script. Type:
sh-2.05b$ catalina.sh jpda start

4. Start the NerBeans IDE by executing the following script:
/u/csc309h/lib/netbeans-6.0.1/bin/netbeans

5. Under the Debug menu, click on "Start Session" and then on "Attach..."
6. In the Attach dialog box, type the name of the "Host" where Tomcat is

running (typically localhost), and the "Port" number to which you set the
environment variable JPDA_ADDRESS (31901 in our example).

7. If, everything went well you should see the following messages on the
"Debugger Console" tab in the lower left corner of the window:
Connecting to localhost:31901
Connection established
- Otherwise, you will get a message box saying something like "Cannot
attach. Check the parameters and try again." This is an indication that the
debugger was not able to connect to Tomcat. Make sure that the
environment variable $JPDA_ADDRESS is set to the right value and that
you are starting Tomcat in debugging mode (see Step 3).

8. Select the "Runtime" tab on the top left corner of the window. Click on
"Debugger" and then again on "Classes." You should see a list of all the
classes that are currently loaded into Tomcat.

9. Point your browser to
http://127.0.0.1:yourPortNumber/csc309/servlet/HelloWorld

10. Go back to NetBeans, the class HelloWorld should have been added to the
list of available classes.

11. Double click on HelloWorld.

Deliverable Directory Structure
<a3-team-name>

1. README.TXT (file containing your team members, name, ids, cdf login. In
addition to any missing features you didn’t have time to
implement)

2. runDBApp (shell script to run the DBApp java application. Should include
in the classpath the jars you are using, e.g.
/u/csc309h/lib/activemq-core-5.2.0.jar)

3. <db> (directory containing all database related scripts: ddl, stored
procedures, inserts, etc…)

4. <config> (directory containing any configuration file for your java

programs or the programs/libraries you use)
5. <lib> (directory containing any additional library you are using)
6. <bin> (java class files, you could have your own packages under this

directory)
7. <src> (java source files for DBApp, you could have your own

packages under this directory)
 DBApp.java (under <src>)

Makefile (under <src> Compiles your application and place executables
under <bin>)

8. <web-app> (directory containing all your sources and classes related to your
tomcat web application)

HOW-TO.TXT (file containing your team members, name, ids, cdf login. In
addition to step-by-step guide on how to install and run your
web-app)

Submissions

• Your submission must work on CDF.
• Using one of the team members cdf account, submit a single zipped file using the

following command: submit -N assign3 csc309h a3-teamname.zip
• The zip file should contain all your work including the parent directory (named after your

team with prefix a3-).

• Do a man submit if you want more information about how to the submit command
works.

	Software
	Adding a Servlet to a Web Application
	Debugging Servlets

