
University of Toronto

CSC309: Introduction to
Web Programming

Lecture 10

Wael Aboulsaadat

CSC309: Introduction to Web Programming

University of Toronto

WebServer - WebApp Communication

2. Servlets

2

Web Browser

Get servlet/serv1?
key1=val1&key2=val2

Web Server Servlet Engine

WebApp1

serv1 serv2

WebApp2

serv3

CSC309: Introduction to Web Programming

University of Toronto

WebServer - WebApp Communication

2. Servlets

3

Web Browser

Get servlet/serv1?
key1=val1&key2=val2

Web Server Servlet Engine

serv1
key1=val1
key2=val2

WebApp1

serv1 serv2

WebApp2

serv3

CSC309: Introduction to Web Programming

University of Toronto

WebServer - WebApp Communication

2. Servlets

4

Web Browser

Get servlet/serv1?
key1=val1&key2=val2

Web Server Servlet Engine

serv1
key1=val1
key2=val2

WebApp1

serv1 serv2

WebApp2

serv3

CSC309: Introduction to Web Programming

University of Toronto

WebServer - WebApp Communication

2. Servlets

5

Web Browser

Get servlet/serv1?
key1=val1&key2=val2

Web Server Servlet Engine

serv1
key1=val1
key2=val2

WebApp1

serv1 serv2

WebApp2

serv3

CSC309: Introduction to Web Programming

University of Toronto

WebServer - WebApp Communication

2. Servlets

6

Web Browser

Get servlet/serv1?
key1=val1&key2=val2

Web Server Servlet Engine

serv1
key1=val1
key2=val2

<html>
…
<body>
…..
</body>
</html>

WebApp1

serv1 serv2

WebApp2

serv3

CSC309: Introduction to Web Programming

University of Toronto

WebServer - WebApp Communication

2. Servlets

7

Web Browser

Get servlet/serv1?
key1=val1&key2=val2

Web Server

<html>
…
<body>
…..
</body>
</html>

Servlet Engine

serv1
key1=val1
key2=val2

<html>
…
<body>
…..
</body>
</html>

WebApp1

serv1 serv2

WebApp2

serv3

CSC309: Introduction to Web Programming

University of Toronto 8

CSC309: Introduction to Web Programming

University of Toronto 9

CSC309: Introduction to Web Programming

University of Toronto 10

CSC309: Introduction to Web Programming

University of Toronto 11

CSC309: Introduction to Web Programming

University of Toronto 12

CSC309: Introduction to Web Programming

University of Toronto 13

CSC309: Introduction to Web Programming

University of Toronto 14

CSC309: Introduction to Web Programming

University of Toronto 15

CSC309: Introduction to Web Programming

University of Toronto 16

CSC309: Introduction to Web Programming

University of Toronto 17

CSC309: Introduction to Web Programming

University of Toronto

Servlets – WebApp structure

18

CSC309: Introduction to Web Programming

University of Toronto

Servlet Lifecycle

CSC309: Introduction to Web Programming

University of Toronto

Servlets Demo

CSC309: Introduction to Web Programming

University of Toronto

Servlet Demo – cont’d
1. Forwarding via Servlets

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class ForwardServlet extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response) throws IOException,
ServletException {

HttpSession mySession = request.getSession();
Date myDate = (Date)mySession.getAttribute("firstvisit");
if (myDate == null) {

myDate = new Date();
mySession.setAttribute("firstvisit", myDate);

}
RequestDispatcher rd = request.getRequestDispatcher("/Welcome.html");
rd.forward(request, response);

}
} 21

CSC309: Introduction to Web Programming

University of Toronto

Servlet Demo – cont’d
1. Sharing Data between Servlets

1: public class FooServlet extends HttpServlet
2: {
3: protected void doGet(HttpServletRequest req,
4: HttpServletResponse res)
5: throws ServletException, IOException
6: {
7: ...
8: ServletContext context = getServletConfig().getServletContext();
9: context.setAttribute(“name“, “wael”);
10: String strCourse = context.getAttribute(“course-key“);
11: ..
12: }

22

CSC309: Introduction to Web Programming

University of Toronto

Servlet Demo – cont’d
3. Inter-servlets communication

1: public class FooServlet extends HttpServlet
2: {
3: protected void doGet(HttpServletRequest req,
4: HttpServletResponse res)
5: throws ServletException, IOException
6: {
7: ...
8: ServletContext context = getServletConfig().getServletContext();
9: BarInterface bar = (BarInterface)context.getServlet("BarServlet");
10: bar.bar();
11: ..
12: }

1: public interface
BarInterface

2: {
3: public void bar();
4: }

1: public class BarServlet extends HttpServlet implements BarInterface
2: {
3: public void bar() {
5: System.err.println(""bar() called"");
6: }

23

CSC309: Introduction to Web Programming

University of Toronto

Servlet issues
1. Writing Thread-safe servlets
setHeader(…)

24

CSC309: Introduction to Web Programming

University of Toronto

Servlets issue
2. Servlets Performance

>> Use init() method to cache static data
>> Use StringBuffer rather than using + operator when

you concatenate multiple strings
>> Use print() method rather than println() method
>> Use ServletOutputStream rather than PrintWriter to

send binary data
>> Initialize the PrintWriter with proper size
>> Flush the data partly
>> Minimize code in the synchronized block
>> Use thread pool for your servlet engine

25

CSC309: Introduction to Web Programming

University of Toronto

Servlet issues
3. Servlet initialization parameters
 Where does a servlet get its initialization values?

 From the web.xml file

 Inside <servlet> </servlet>
<init-param>

<param-name>myName</param-name>
<param-value>myValue</param-value>

</init-param>

 In the servlet code:
 String myValue = getServletConfig().getInitParameter("myName");

26

CSC309: Introduction to Web Programming

University of Toronto

Servlet issues
4. Servlets context parameters
 Where does a servlet get its context?

 From the web.xml file

 Not inside <servlet> </servlet>
<context-param>

<param-name>myName</param-name>
<param-value>myValue</param-value>

</context-param>

 In the servlet code:
 String myValue =getServletContext().getInitParameter("myName");

CSC309: Introduction to Web Programming

University of Toronto

Servlet issues
5. Accessing Servlet Resources

InputStream confIn = getClass().getResourceAsStream("myservlet.cfg");

28

CSC309: Introduction to Web Programming

University of Toronto

1. Multi-threaded model
a. Servlet containers create a new Java thread

for each request.
b. The new thread is given an object reference

to the requested servlet, which issues the
response through the same thread.
 Each request thread for your servlet runs as if a

single user were accessing it alone,
you can use static variables to store and present

information that is common to all threads,
(e.g.counter)

Servlets Implementation

29

CSC309: Introduction to Web Programming

University of Toronto
30

Thread safety
 Thread problems can occur when:

 One Thread is writing to (modifying) an object at the same time
another Thread is reading it

 Two (or more) Threads are trying to write to the same object at
the same time

30

CSC309: Introduction to Web Programming

University of Toronto 31

Thread safety – cont’d
 Thread problems cannot (in general) be detected by the

Java runtime system
 Instead, thread problems cause random, mysterious, non-

replicable corruption of data

 There are simple steps that you can take to avoid many
threading problems
 However, threading is very error-prone and can be extremely

difficult to ensure that you have it right

CSC309: Introduction to Web Programming

University of Toronto 32

Thread safety – cont’d

CSC309: Introduction to Web Programming

University of Toronto
33

Thread safety in servlets
 Each request, and therefore each Thread, has its own

request and response objects
 Therefore, these are inherently Thread-safe
 Local variables (including parameters) of your service methods

are thread-safe
 Instance variables are thread-unsafe

 You don’t have multiple servlet objects—you have multiple Threads
using the same servlet object

 Application (context) scope is shared by all servlets
 Therefore, context attributes are inherently Thread-unsafe

 Session attributes are not completely Thread-safe
 It is possible to have multiple simultaneous requests from the

same session

CSC309: Introduction to Web Programming

University of Toronto
34

Protecting context attributes
 To protect context attributes, synchronize on the ServletContext

object
 Example

synchronized(getServletContext()) {
getServletContext().setAttribute("foo", "22");
getServletContext().setAttribute("bar", "42");

out.println(getServletContext().getAttribute("foo"));
out.println(getServletContext().getAttribute("bar"));

}
 This will protect you from any other code that also synchronizes on

the ServletContext
 It will not protect you from code that doesn’t synchronize

 But this is the best we can do

CSC309: Introduction to Web Programming

University of Toronto

Protecting session attributes
 To protect session attributes, synchronize on the

HttpSession object
 Example:

HttpSession session = request.getSession();
synchronized(session) {

session.setAttribute("foo", "22");
session.setAttribute("bar", "42");

out.println(session.getAttribute("foo"));
out.println(session.getAttribute("bar"));

}

 This will protect you from any other code that also
synchronizes on the HttpSession

35

CSC309: Introduction to Web Programming

University of Toronto
36

Unsafe Servlet example
public class SomeServlet extends HTTPServlet
{

private String someParam;

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

someParam = request.getParameter("someParam");
processParam();

}

private void processParam() {
// Do something with someParam
}

36

CSC309: Introduction to Web Programming

University of Toronto 37

Safe Servlet example
 A thread safe alternative is:

public class SomeServlet extends HTTPServlet
{

protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

String someParam = request.getParameter("someParam");
processParam(someParam);

}

private void processParam(String strInput) {
// Do something with strInput

}

CSC309: Introduction to Web Programming

University of Toronto 38

Thread safety in class assignments
 In reality, the servlets you write for this course are not

going to service thousands of requests per second

 However...

 Bottom line: Try your best to make your servlets thread-
safe, even though we can’t test them for thread safety

CSC309: Introduction to Web Programming

University of Toronto

2. Single thread-model

public class SingleThreadServlet extends HttpServlet
implements SingleThreadServlet

{
// Standard HTTP servlet methods

}

Servlets Implementation

CSC309: Introduction to Web Programming

University of Toronto

Servlets && Application Architecture

1. Mutliple-Servlets Architecture
 One per functionality:

 LoginServlet, LogoutServlet,
RegisterUserServlet,…

40

CSC309: Introduction to Web Programming

University of Toronto

2. Single-Servlet Architecture
 One façade servlet, action in parameter list

http://www.xyz.com/go?action=register
http://www.xyz.com/go?action=login

Servlets && Application Architecture

http://www.xyz.com/go?action=register�
http://www.xyz.com/go?action=login�

CSC309: Introduction to Web Programming

University of Toronto

2. Single-Servlet Architecture

Servlets && Application Architecture

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class GoServlet extends HttpServlet {

protected void doGet(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException {

String strAction = req.getParameter(“action”);
………

}

protected void doPost(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException {

doGet(req, res);
}

}

CSC309: Introduction to Web Programming

University of Toronto

3. Routing-Servlet Architecture
 A mix model

 One entry point, forward to one of several possible
servlets

 Each can forward to one of several possible
servlets

Servlets && Application Architecture

login

homepage

Retrieve-password

43

CSC309: Introduction to Web Programming

University of Toronto

1. Mutliple-Servlets Architecture
2. Single-Servlet Architecture
3. Routing-Servlet Architecture

Servlets && Application Architecture

Model 1 Architecture

44

CSC309: Introduction to Web Programming

University of Toronto

Model 1 Architecture

Maintainability Problems
 structure of the application will be embodied within the

pages. The pages will include diverse functionality, such
as:
 Complex business logic
 Links to other parts of the web application
 The names of pages to which forms should be submitted

Servlets

45

CSC309: Introduction to Web Programming

University of Toronto

Model 1 Architecture

Extensibility Problems
 Pages contain diverse functionality  tightly-coupled together

 Changing some functionality could ripple causing bugs

Servlets

CSC309: Introduction to Web Programming

University of Toronto

Model 1 Architecture

Security Problems
 Each page in a restricted area of a website would have to perform

its own security checks to ensure that the user is logged in and that
the user is permitted to see the contents of the page.

Servlets

47

CSC309: Introduction to Web Programming

University of Toronto

Servlets

CSC309: Introduction to Web Programming

University of Toronto

Servlets

Data

Presentation

logic

Lots of HTML and Lots of Java…
49

CSC309: Introduction to Web Programming

University of Toronto

JSP

50

CSC309: Introduction to Web Programming

University of Toronto

 Java Server Pages

 .jsp page is really a template of what the actual
html should be…

JSP

HTML Template Processor Actual HTML

CSC309: Introduction to Web Programming

University of Toronto

Components of a JSP Page
 A .jsp file contains

 JSP Elements
 Instructions to the JSP container about what code to generate and

how it should operate
 These elements have specific start and end tags that identify them

to the JSP compiler

 Fixed Template data (aka HTML)
 Everything else that is not recognized by the JSP container
 Usually HTML data, passed through unmodified
 Results in HTML code that is sent to the client

 Any combination of the two

CSC309: Introduction to Web Programming

University of Toronto

JSP Elements
 3 types of JSP Elements
 Directives

 Instructions to the JSP container that describes what code should be
generated

 <%@ directive-name [attribute=“value” attribute=“value” ….] %>
 Three standard directives

 page directive
 include directive
 taglib directive

 Scripting Elements
 Lets you specify Java code inside the .jsp page

 Actions
 Specify existing components that should be used and otherwise control

the behavior of JSP engine

53

CSC309: Introduction to Web Programming

University of Toronto
54

JSP scripting elements
 <%= expression %>

 The expression is evaluated and the result is inserted into the HTML
page

 <% code %>
 The code is inserted into the servlet's service method
 If code contains declarations, they become local variables of the

service method
 This construction is called a scriptlet

 <%! declarations %>
 The declarations are inserted into the servlet class, not into a method
 Hence, declarations made here become instance variables

54

CSC309: Introduction to Web Programming

University of Toronto
55

Example JSP
 <HTML>

<BODY>
Hello! The time is now <%= new java.util.Date() %>
</BODY>
</HTML>

 Notes:
 The <%= ... %> tag is used, because we are computing

a value and inserting it into the HTML
 The fully qualified name (java.util.Date) is used,

instead of the short name (Date), because we haven’t
yet talked about how to do import declarations

55

CSC309: Introduction to Web Programming

University of Toronto
56

JSP Variables
 You can declare your own variables, as usual..

 JSP provides several predefined variables
 request : The HttpServletRequest parameter
 response : The HttpServletResponse parameter
 session : The HttpSession associated with the request
 out : A JspWriter (like a PrintWriter) used to send

output to the client

CSC309: Introduction to Web Programming

University of Toronto

Example Using JSP Expressions
<HTML> <BODY> <H2>JSP Expressions</H2>

Current time: <%= new java.util.Date() %>
Your hostname: <%= request.getRemoteHost() %>

The URI Requested: <%= request.getRequestURI() %>
The Protocol Used: <%= request.getProtocol() %>
Your session ID: <%= session.getId() %>
The <CODE>testParam</CODE> form parameter:

<%= request.getParameter("testParam") %>
 </BODY> </HTML>

57

CSC309: Introduction to Web Programming

University of Toronto 58

JSP Scriptlets
 Scriptlets are enclosed in <% ... %> tags

 Scriptlets are executable code and do not directly affect the HTML
 Scriptlets may write into the HTML with out.print(value) and

out.println(value)
 Example:

<% String queryData = request.getQueryString();
out.println("Attached GET data: " + queryData); %>

 Scriptlets are inserted into the servlet exactly as written, and
are not compiled until the entire servlet is compiled
 Example:

<% if (Math.random() < 0.5) { %>
Have a nice day!

<% } else { %>
Have a lousy day!

<% } %>

CSC309: Introduction to Web Programming

University of Toronto

JSP/Servlet Correspondence
 Original .jsp

<H1>A Random Number</H1>
<%= Math.random() %>

 Possible resulting servlet code
public void _jspService(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
HttpSession session = request.getSession(true);
JspWriter out = response.getWriter();
out.println("<H1>A Random Number</H1>");
out.println(Math.random());

...
59

CSC309: Introduction to Web Programming

University of Toronto

How does JSP work?
JSP Document

.java file

.class file

.class file ready to run

Response Document

Translation

Compilation

Reinitialization

Subsequent
User Requests

60

CSC309: Introduction to Web Programming

University of Toronto

JSP

61

CSC309: Introduction to Web Programming

University of Toronto

Model 2 Architecture

Servlets+JSP

CSC309: Introduction to Web Programming

University of Toronto

Model 2 Architecture = MVC Design Pattern

Servlets+JSP

63

CSC309: Introduction to Web Programming

University of Toronto

Model 2 Architecture

Controller Servlet
 Act as a single point of entry for requests
 Process the requests, accessing and modifying the underlying

model
 Delegate the task of presenting information to a specific view

component

Servlets+JSP

64

CSC309: Introduction to Web Programming

University of Toronto

Model 2 Architecture +
Command Pattern

Controller Servlet
 Act as a single point of entry for requests
 Process the requests by dispatching it to a specific command

 (command access and modify the underlying object model)

 Delegate the task of presenting information to a specific view
component

Servlets+JSP

65

CSC309: Introduction to Web Programming

University of Toronto

Model 2 Architecture +
Command Pattern

Servlets+JSP

import java.util.HashMap;
public class ActionHelper {
private static HashMap actions = new HashMap();
static {
actions.put("ViewTopic", "forum.ViewTopicAction");
actions.put("Login", "forum.LoginAction");
actions.put("Logout", "forum.LogoutAction");
actions.put("NewResponse", "forum.NewResponseAction");
actions.put("ProcessNewResponse",
"forum.ProcessNewResponseAction");
actions.put("DeleteResponse", "forum.DeleteResponseAction");
}

public static Action getAction(String
name) {
Action action = null;
try {

Class c =
Class.forName((String)actions.

get(name));
action = (Action)c.newInstance();

}
catch (Exception e) {
e.printStackTrace();
}
return action;
} }

66

CSC309: Introduction to Web Programming

University of Toronto

Model 2 Architecture +
Command Pattern

Servlets+JSP

import java.io.IOException;
import javax.servlet.*;
import javax.servlet.http.*;

public class FrontController extends HttpServlet {

protected void processRequest(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException {

String actionName = req.getPathInfo().substring(1);

Action action = ActionHelper.getAction(actionName);

String nextView = action.process(req, res);

RequestDispatcher dispatcher =
getServletContext().

getRequestDispatcher(nextView);
dispatcher.forward(req, res);

}

protected void doGet(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException {
processRequest(req, res);

}

67

CSC309: Introduction to Web Programming

University of Toronto

Model 2 Architecture +
Command Pattern

Servlets+JSP

68

	CSC309: Introduction to �Web Programming��Lecture 10
	WebServer - WebApp Communication
	WebServer - WebApp Communication
	WebServer - WebApp Communication
	WebServer - WebApp Communication
	WebServer - WebApp Communication
	WebServer - WebApp Communication
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Servlets – WebApp structure
	Servlet Lifecycle
	Servlets Demo
	Servlet Demo – cont’d
	Servlet Demo – cont’d
	Servlet Demo – cont’d
	Servlet issues
	Servlets issue
	Servlet issues
	Servlet issues
	Servlet issues
	Servlets Implementation
	Thread safety
	Thread safety – cont’d
	Thread safety – cont’d
	Thread safety in servlets
	Protecting context attributes
	Protecting session attributes
	Unsafe Servlet example
	Safe Servlet example
	Thread safety in class assignments
	Servlets Implementation
	Servlets && Application Architecture
	Servlets && Application Architecture
	Servlets && Application Architecture
	Servlets && Application Architecture
	Servlets && Application Architecture
	Servlets
	Servlets
	Servlets
	Servlets
	Servlets
	JSP
	JSP
	Components of a JSP Page
	JSP Elements
	JSP scripting elements
	Example JSP
	JSP Variables
	Example Using JSP Expressions
	JSP Scriptlets
	JSP/Servlet Correspondence
	How does JSP work?
	JSP
	Servlets+JSP
	Servlets+JSP
	Servlets+JSP
	Servlets+JSP
	Servlets+JSP
	Servlets+JSP
	Servlets+JSP

