
University of Toronto

CSC309: Introduction to
Web Programming

Lecture 4

Wael Aboulsaadat

1

2

CSC309: Introduction to Web Programming

JavaScript Overview
• History
• Language
• Advanced Features
• Platforms
• Standards
• Style

3

CSC309: Introduction to Web Programming

Sources of Misunderstanding
• The Name
• Mispositioning
• Design Errors
• Bad Implementations
• The Browser
• Bad Books
• Substandard Standard
• JavaScript is a Functional Language

4

CSC309: Introduction to Web Programming

History
• 1992

Oak, Gosling at Sun & FirstPerson
• 1995

Java
LiveScript at Netscape

• 1996
JScript at Microsoft

• 1998
ECMAScript

5

CSC309: Introduction to Web Programming

Not a Web Toy
• It is a real language

• Small, but sophisticated

• It is not a subset of Java

6

CSC309: Introduction to Web Programming

Key Ideas
• Load and go delivery
• Loose typing
• Objects as general containers
• Prototypal inheritance
• Lambda
• Linkage though global variables

7

CSC309: Introduction to Web Programming

Values
• Numbers
• Strings
• Booleans
• Objects
• null
• undefined

8

CSC309: Introduction to Web Programming

Numbers
• Only one number type

No integers

• 64-bit floating point

• IEEE-754 (aka “Double”)

• Does not map well to common
understanding of arithmetic:

• 0.1 + 0.2 = 0.30000000000000004

9

CSC309: Introduction to Web Programming

NaN
• Special number: Not a Number

• Result of undefined or erroneous
operations

• Toxic: any arithmetic operation
with NaN as an input will have NaN
as a result

• NaN is not equal to anything,
including NaN

10

CSC309: Introduction to Web Programming

Number function
Number(value)

• Converts the value into a number.

• It produces NaN if it has a problem.

• Similar to + prefix operator.

11

CSC309: Introduction to Web Programming

parseInt function
parseInt(value, 10)

• Converts the value into a number.

• It stops at the first non-digit character.

• The radix (10) should be required.

parseInt("08") === 0
parseInt("08", 10) === 8

12

CSC309: Introduction to Web Programming

Math
• Math object is modeled on Java's Math class.
• It contains

abs absolute value
floor integer
log logarithm
max maximum
pow raise to a power
random random number
round nearest integer
sin sine
sqrt square root

13

CSC309: Introduction to Web Programming

Strings
• Sequence of 0 or more 16-bit

characters
UCS-2, not quite UTF-16

• No separate character type
Characters are represented as strings with
a length of 1

• Strings are immutable
• Similar strings are equal (==)
• String literals can use single or double

quotes

14

CSC309: Introduction to Web Programming

String length
• string.length

• The length property determines
the number of 16-bit characters in
a string.

15

CSC309: Introduction to Web Programming

String function
String(value)

• Converts value to a string

16

CSC309: Introduction to Web Programming

String Methods
• charAt
• concat
• indexOf
• lastIndexOf
• match
• replace
• search
• slice
• split
• substring
• toLowerCase
• toUpperCase

17

CSC309: Introduction to Web Programming

Booleans
• true
• false

18

CSC309: Introduction to Web Programming

Boolean function
Boolean(value)

• returns true if value is truthy
• returns false if value is falsy
• Similar to !! prefix operator

19

CSC309: Introduction to Web Programming

null
• A value that isn't anything

20

CSC309: Introduction to Web Programming

undefined
• A value that isn't even that

• The default value for variables
and parameters

• The value of missing members in
objects

21

CSC309: Introduction to Web Programming

Falsy values
• false
• null
• undefined
• "" (empty string)
• 0
• NaN

• All other values (including all objects)
are truthy.

"0" "false"

CSC309: Introduction to Web Programming

Everything Else Is Objects

22

23

CSC309: Introduction to Web Programming

Dynamic Objects
• Unification of Object and Hashtable

• new Object() produces an empty container of
name/value pairs

• A name can be any string, a value can be any
value except undefined

• members can be accessed with dot notation
or subscript notation

• No hash nature is visible (no hash codes or
rehash methods)

24

CSC309: Introduction to Web Programming

Loosely Typed
• Any of these types can be stored

in an variable, or passed as a
parameter to any function

• The language is not "untyped"

25

CSC309: Introduction to Web Programming

C
• JavaScript is syntactically a C

family language

• It differs from C mainly in its type
system, which allows functions to
be values

26

CSC309: Introduction to Web Programming

Identifiers
• Starts with a letter or _ or $
• Followed by zero or more letters, digits, _ or $

• By convention, all variables, parameters,
members, and function names start with
lower case

• Except for constructors which start with
upper case

• Initial _ should be reserved for
implementations

• $ should be reserved for machines.

27

CSC309: Introduction to Web Programming

Reserved Words
abstract
boolean break byte
case catch char class const continue
debugger default delete do double
else enum export extends
false final finally float for function
goto
if implements import in instanceof int
interface
long
native new null
package private protected public
return
short static super switch synchronized
this throw throws transient true try typeof
var volatile void
while with

28

CSC309: Introduction to Web Programming

Comments
// slashslash line comment

/*
slashstar
block
comment

*/

29

CSC309: Introduction to Web Programming

Operators
• Arithmetic

+ - * / %

• Comparison
== != < > <= >=

• Logical
&& || !

• Bitwise
& | ^ >> >>> <<

Ternary
?:

30

CSC309: Introduction to Web Programming

+
• Addition and concatenation
• If both operands are numbers,

then
add them

else
convert them both to strings
concatenate them

'$' + 3 + 4 = '$34'

31

CSC309: Introduction to Web Programming

+
• Unary operator can convert

strings to numbers
+"42" = 42

• Also
Number("42") = 42

• Also
parseInt("42", 10) = 42

+"3" + (+"4") = 7

32

CSC309: Introduction to Web Programming

/
• Division of two integers can

produce a non-integer result

10 / 3 = 3.3333333333333335

33

CSC309: Introduction to Web Programming

== !=
• Equal and not equal

• These operators can do type
coercion

• It is better to use === and !==,
which do not do type coercion.

34

CSC309: Introduction to Web Programming

&&
• The guard operator, aka logical and
• If first operand is truthy

then result is second operand
else result is first operand

if (a) {
return a.member;

} else {
return a;

}

can be written as
return a && a.member;

35

CSC309: Introduction to Web Programming

||
• The default operator, aka logical or
• If first operand is truthy

then result is first operand
else result is second operand

• It can be used to fill in default values.
var last = input || nr_items;

• (If input is truthy, then last is input,
otherwise set last to nr_items.)

36

CSC309: Introduction to Web Programming

!
• Prefix logical not operator.
• If the operand is truthy, the result

is false. Otherwise, the result is
true.

• !! produces booleans.

37

CSC309: Introduction to Web Programming

Bitwise
& | ^ >> >>> <<

• The bitwise operators convert the
operand to a 32-bit signed integer,
and turn the result back into 64-
bit floating point.

38

CSC309: Introduction to Web Programming

Statements
• expression
• if
• switch
• while
• do
• for
• break
• continue
• return
• try/throw

39

CSC309: Introduction to Web Programming

Break statement
• Statements can have labels.
• Break statements can refer to those

labels.

loop: for (;;) {

...
if (...) {

break loop;
}

...
}

40

CSC309: Introduction to Web Programming

For statement
• Iterate through all of the elements

of an array:

for (var i = 0; i < array.length; i += 1) {

// within the loop,
// i is the index of the current member
// array[i] is the current element

}

41

CSC309: Introduction to Web Programming

For statement
• Iterate through all of the members of

an object:

for (var name in object) {
if (object.hasOwnProperty(name)) {

// within the loop,
// name is the key of current member
// object[name] is the current value

}
}

42

CSC309: Introduction to Web Programming

Switch statement
• Multiway branch

• The switch value does not need to
a number. It can be a string.

• The case values can be
expressions.

43

CSC309: Introduction to Web Programming

Switch statement
switch (expression) {
case ';':
case ',':
case '.':

punctuation();
break;

default:
noneOfTheAbove();

}

44

CSC309: Introduction to Web Programming

Throw statement
throw new Error(reason);

throw {
name: exceptionName,
message: reason

};

45

CSC309: Introduction to Web Programming

Try statement
try {

...
} catch (e) {

switch (e.name) {
case 'Error':

...
break;

default:
throw e;

}
}

46

CSC309: Introduction to Web Programming

Try Statement
• The JavaScript implementation

can produce these exception
names:
'Error'
'EvalError'
'RangeError'
'SyntaxError'
'TypeError'
'URIError'

CSC309: Introduction to Web Programming

With statement
• Intended as a

short-hand

• Ambiguous

• Error-prone

• Don't use it

with (o) {
foo = null;

}

 o.foo = null;

 foo = null;

47

48

CSC309: Introduction to Web Programming

Function statement
function name(parameters) {

statements;
}

49

CSC309: Introduction to Web Programming

Var statement
• Defines variables within a

function.

• Types are not specified.

• Initial values are optional.

var name;
var nrErrors = 0;
var a, b, c;

50

CSC309: Introduction to Web Programming

Scope
• In JavaScript, {blocks} do not

have scope.

• Only functions have scope.

• Vars defined in a function are not
visible outside of the function.

51

CSC309: Introduction to Web Programming

Return statement
return expression;

• or
return;

• If there is no expression, then the
return value is undefined.

• Except for constructors, whose
default return value is this.

52

CSC309: Introduction to Web Programming

Objects
• Everything else is objects

• Objects can contain data and
methods

• Objects can inherit from other
objects.

53

CSC309: Introduction to Web Programming

Collections
• An object is an unordered collection of

name/value pairs

• Names are strings

• Values are any type, including other
objects

• Good for representing records and
trees

• Every object is a little database

54

CSC309: Introduction to Web Programming

Object Literals
• Object literals are wrapped in { }

• Names can be names or strings

• Values can be expressions

• : separates names and values

• , separates pairs

• Object literals can be used anywhere a
value can appear

CSC309: Introduction to Web Programming

Object Literals
var myObject = {name: "Jack B. Nimble",
'goto': 'Jail', grade: 'A', level: 3};

"name" "Jack B. Nimble"

"goto" "Jail"

"grade" "A"

"level" 3

var theName = myObject.name;
var destination = myObject['goto'];

55

56

CSC309: Introduction to Web Programming

Maker Function
function maker(name, where, grade, level) {

var it = {};
it.name = name;
it['goto'] = where;
it.grade = grade;
it.level = level;
return it;

}

myObject = maker("Jack B. Nimble",
'Jail', 'A', 3);

CSC309: Introduction to Web Programming

Object Literals
var myObject = {name: "Jack B. Nimble",
'goto': 'Jail', grade: 'A', format:
{type: 'rect', width: 1920, height: 1080,
interlace: false, framerate: 24}};

57

CSC309: Introduction to Web Programming

Object Literals
var myObject = {

name: "Jack B. Nimble",

'goto': 'Jail',

grade: 'A',

format: {

type: 'rect',

width: 1920,

height: 1080,

interlace: false,

framerate: 24

}

};
58

CSC309: Introduction to Web Programming

Object Literals

myFunction({

type: 'rect',

width: 1920,

height: 1080

});

throw {

name: 'error',

message: 'out of bounds'

}; 59

60

CSC309: Introduction to Web Programming

Object Literals
function SuperDiv(width, height,
left, top, zIndex, position,
color, visibility, html,
cssClass)

function SuperDiv(spec)

61

CSC309: Introduction to Web Programming

Object Augmentation
• New members can be added to

any object by simple assignment

• There is no need to define a new
class
myObject.format.colorModel =
'YCgCb';

myObject[name] = value;

62

CSC309: Introduction to Web Programming

Linkage
• Objects can be created with a secret

link to another object.

• If an attempt to access a name fails,
the secret linked object will be used.

• The secret link is not used when
storing. New members are only added
to the primary object.

• The object(o) function makes a new
empty object with a link to object o.

CSC309: Introduction to Web Programming

Linkage

"name" "Jack B. Nimble"

"goto" "Jail"

"grade" "A"

"level" 3

var myNewObject = object(myOldObject);

myNewObject

myOldObject

63

CSC309: Introduction to Web Programming

Linkage

"name" "Tom Piperson"

"level" 4

"crime" "pignapping"

myNewObject.name = "Tom Piperson";

myNewObject.level = myNewObject.level + 1;

myNewObject.crime = 'pignapping';

"name" "Jack B. Nimble"

"goto" "Jail"

"grade" "A"

"level" 3 64

65

CSC309: Introduction to Web Programming

Inheritance
• Linkage provides simple

inheritance.

• An object can inherit from an
older object.

66

CSC309: Introduction to Web Programming

Prototypal Inheritance
• Some languages have classes,

methods, constructors, and modules.
JavaScript's functions do the work of
all of those.

• Instead of Classical Inheritance,
JavaScript has Prototypal Inheritance.

• It accomplishes the same things, but
differently.

• It offers greater expressive power.
• But it's different.

67

CSC309: Introduction to Web Programming

Prototypal Inheritance
• Instead of organizing objects into rigid

classes, new objects can be made that are
similar to existing objects, and then
customized.

• Object customization is a lot less work than
making a class, and less overhead, too.

• One of the keys is the object(o) function.

• The other key is functions.

68

CSC309: Introduction to Web Programming

Object Methods
• All objects are linked directly or indirectly

to Object.prototype
• All objects inherit some basic methods.
• None of them are very useful.
• hasOwnProperty(name)

Is the name a true member of this
object?

• No copy method.
• No equals method.

69

CSC309: Introduction to Web Programming

Object Construction
• Make a new empty object
• All three of these expressions have

exactly the same result:

new Object()

{}

object(Object.prototype)

• {} is the preferred form.

70

CSC309: Introduction to Web Programming

Reference
• Objects can be passed as

arguments to functions, and can
be returned by functions

Objects are passed by reference.
Objects are not passed by value.

• The === operator compares object
references, not values
true only if both operands are the
same object

71

CSC309: Introduction to Web Programming

Delete
• Members can be removed from an

object with the delete operator

delete myObject[name];

72

CSC309: Introduction to Web Programming

Arrays
• Array inherits from Object.

• Indexes are converted to strings and
used as names for retrieving values.

• Very efficient for sparse arrays.

• Not very efficient in most other cases.

• One advantage: No need to provide a
length or type when creating an array.

73

CSC309: Introduction to Web Programming

length
• Arrays, unlike objects, have a special
length member.

• It is always 1 larger than the highest
integer subscript.

• It allows use of the traditional for
statement.

for (i = 0; i < a.length; i += 1) {
...

}

• Do not use for..in with arrays

74

CSC309: Introduction to Web Programming

Array Literals
• An array literal uses []
• It can contain any number of

expressions, separated by commas
myList = ['oats', 'peas', 'beans'];

• New items can be appended
myList[myList.length] = 'barley';

• The dot notation should not be used
with arrays.

• [] is preferred to new Array().

75

CSC309: Introduction to Web Programming

Array Methods
• concat
• join
• pop
• push
• slice
• sort
• splice

76

CSC309: Introduction to Web Programming

Deleting Elements
delete array[index]

• Removes the element, but leaves
a hole in the numbering.

array.splice(index, 1)

• Removes the element and
renumbers all the following
elements.

77

CSC309: Introduction to Web Programming

Deleting Elements
myArray = ['a', 'b', 'c', 'd'];

delete myArray[1];

// ['a', undefined, 'c', 'd']

myArray.splice(1, 1);

// ['a', 'c', 'd']

78

CSC309: Introduction to Web Programming

Arrays v Objects
• Use objects when the names are

arbitrary strings.

• Use arrays when the names are
sequential integers.

• Don't get confused by the term
Associative Array.

79

CSC309: Introduction to Web Programming

Arrays and Inheritance
• Don’t use arrays as prototypes.

The object produced this way does not
have array nature. It will inherit the array's
values and methods, but not its length.

• You can augment an individual array.
Assign a method to it.
This works because arrays are objects.

• You can augment all arrays.
Assign methods to Array.prototype

80

CSC309: Introduction to Web Programming

Functions
• Functions are first-class objects

1. Functions can be passed,
returned, and stored just like any
other value

2. Functions inherit from Object
and can store name/value pairs.

81

CSC309: Introduction to Web Programming

Function operator
• The function operator takes an

optional name, a parameter list,
and a block of statements, and
returns a function object.
function name(parameters) {

statements
}

• A function can appear anywhere
that an expression can appear.

82

CSC309: Introduction to Web Programming

lambda
• What JavaScript calls function,

other languages call lambda.

• It is a source of enormous
expressive power.

• Unlike most power-constructs, it
is secure.

83

CSC309: Introduction to Web Programming

Function statement
• The function statement is just a

short-hand for a var statement
with a function value.

function foo() {}

expands to

var foo = function foo() {};

84

CSC309: Introduction to Web Programming

Inner functions
• Functions do not all have to be

defined at the top level (or left
edge).

• Functions can be defined inside of
other functions.

85

CSC309: Introduction to Web Programming

Scope
• An inner function has access to

the variables and parameters of
functions that it is contained
within.

• This is known as Static Scoping or
Lexical Scoping.

86

CSC309: Introduction to Web Programming

Closure
• The scope that an inner function

enjoys continues even after the
parent functions have returned.

• This is called closure.

87

CSC309: Introduction to Web Programming

Example
function fade(id) {

var dom = document.getElementById(id),
level = 1;

function step () {
var h = level.toString(16);
dom.style.backgroundColor =

'#FFFF' + h + h;
if (level < 15) {

level += 1;
setTimeout(step, 100);

}
}
setTimeout(step, 100);

}

88

CSC309: Introduction to Web Programming

Function Objects
• Functions are objects, so they can

contain name/value pairs.

• This can serve the same purpose
as static members in other
languages.

89

CSC309: Introduction to Web Programming

Method
• Since functions are values,

functions can be stored in
objects.

• A function in an object is called a
method.

90

CSC309: Introduction to Web Programming

Invocation
• If a function is called with too

many arguments, the extra
arguments are ignored.

• If a function is called with too few
arguments, the missing values
will be undefined.

• There is no implicit type checking
on the arguments.

91

CSC309: Introduction to Web Programming

Invocation
• There are four ways to call a function:

Function form
functionObject(arguments)

Method form
thisObject.methodName(arguments)
thisObject["methodName"](arguments)

Constructor form
new functionObject(arguments)

Apply form
functionObject.apply(thisObject,

[arguments])

92

CSC309: Introduction to Web Programming

Method form
thisObject.methodName(arguments)

• When a function is called in the
method form, this is set to
thisObject, the object containing
the function.

• This allows methods to have a
reference to the object of
interest.

93

CSC309: Introduction to Web Programming

Function form
functionObject(arguments)

• When a function is called in the
function form, this is set to the
global object.

That is not very useful.
It makes it harder to write helper
functions within a method because
the helper function does not get
access to the outer this.

var that = this;

94

CSC309: Introduction to Web Programming

Constructor form
new functionObject(arguments)

• When a function is called with the
new operator, a new object is
created and assigned to this.

• If there is not an explicit return
value, then this will be returned.

CSC309: Introduction to Web Programming

this

• this is an extra
parameter. Its
value depends on
the calling form.

• this gives
methods access
to their objects.

• this is bound at
invocation time.

Invocation
form this

function the global
object

method the object

constructor the new
object

95

96

CSC309: Introduction to Web Programming

arguments
• When a function is invoked, in addition

to its parameters, it also gets a special
parameter called arguments.

• It contains all of the arguments from
the invocation.

• It is an array-like object.

• arguments.length is the number of
arguments passed.

97

CSC309: Introduction to Web Programming

Example
function sum() {

var i,
n = arguments.length,
total = 0;

for (i = 0; i < n; i += 1) {
total += arguments[i];

}
return total;

}

98

CSC309: Introduction to Web Programming

Augmenting Built-in Types
• Object.prototype
• Array.prototype
• Function.prototype
• Number.prototype
• String.prototype
• Boolean.prototype

CSC309: Introduction to Web Programming

trim

String.prototype.trim = function () {

return this.replace(

/^\s*(\S*(\s+\S+)*)\s*$/, "$1");

};

99

100

CSC309: Introduction to Web Programming

typeof
• The typeof prefix operator returns

a string identifying the type of a
value. type typeof

object 'object'

function 'function'

array 'object'

number 'number'

string 'string'

boolean 'boolean'

null 'object'

undefined 'undefined'

101

CSC309: Introduction to Web Programming

eval
eval(string)

• The eval function compiles and
executes a string and returns the
result.

• It is what the browser uses to convert
strings into actions.

• It is the most misused feature of the
language.

102

CSC309: Introduction to Web Programming

Function function
new Function(parameters, body)

• The Function constructor takes zero or
more parameter name strings, and a
body string, and uses the JavaScript
compiler to produce a function object.

• It should only be used to compile fresh
source from a server.

• It is closely related to eval.

103

CSC309: Introduction to Web Programming

Built-in Type Wrappers
• Java has int and Integer, two

incompatible types which can both
carry the same value with differing
levels of efficiency and
convenience.

• JavaScript copied this pattern to no
advantage. Avoid it.

• Avoid new Boolean()
• Avoid new String()
• Avoid new Number()

104

CSC309: Introduction to Web Programming

(global) Object
• The object that dares not speak its

name.

• It is the container for all global
variables and all built-in objects.

• Sometimes this points to it.
var global = this;

• On browsers, window is the global
object.

105

CSC309: Introduction to Web Programming

Global variables are evil
• Functions within an application

can clobber each other.

• Cooperating applications can
clobber each other.

• Use of the global namespace must
be minimized.

106

CSC309: Introduction to Web Programming

Implied Global
• Any var which is not properly declared

is assumed to be global by default.

• This makes it easy for people who do
not know or care about encapsulation
to be productive, but it makes
applications less reliable.

• JSLint is a tool which helps identify
implied globals and other weaknesses.

http://www.JSLint.com

107

CSC309: Introduction to Web Programming

Namespace
• Every object is a separate namespace.

• Use an object to organize your
variables and functions.

• The YAHOO Object.
<head>
<script>
YAHOO={};
</script>

• http://twiki.corp.yahoo.com/view/Devel/TheYAHOOObject

108

CSC309: Introduction to Web Programming

Thinking about type
• Trading type-safety for dynamism.
• JavaScript has no cast operator.
• Reflection is really easy, and

usually unnecessary.
• Why inheritance?

Automatic casting
Code reuse

• Trading brittleness for flexibility.

109

CSC309: Introduction to Web Programming

RegExp
• Regular expression pattern

matcher
• Patterns are enclosed in slashes
• Example: a pattern that matches

regular expressions

/\/(\\[^\x00-\x1f]|\[(\\[^\x00-\x1f]|[^\x00-
\x1f\\\/])*\]|[^\x00-\x1f\\\/\[])+\/[gim]*/

• Bizarre notation, difficult to read.

110

CSC309: Introduction to Web Programming

Threads
• The language definition is neutral on

threads

• Some language processors (like
SpiderMonkey) provide thread support

• Most application environments (like
browsers) do not provide it

• Threads are evil

University of Toronto

Code Conventions for the
JavaScript Programming

Language

http://javascript.crockford.com/code.html

111

112

CSC309: Introduction to Web Programming

Semicolon insertion
• When the compiler sees an error, it

attempts to replace a nearby linefeed
with a semicolon and try again.

• This should alarm you.

• It can mask errors.

• Always use the full, correct forms,
including semicolons.

113

CSC309: Introduction to Web Programming

Comma
• Avoid tricky expressions using the

comma operators.

• Do not use extra commas in array
literals.

• Good: [1, 2, 3]
• Bad: [1, 2, 3,]

114

CSC309: Introduction to Web Programming

Required Blocks
• Good:

if (a) {
b();

}

• Bad:
if (a) b();

115

CSC309: Introduction to Web Programming

Forbidden Blocks
• Blocks do not have scope in JavaScript.

• Blocks should only be used with structured
statements
function
if
switch
while
for
do
try

116

CSC309: Introduction to Web Programming

Variables
• Define all variables at the

beginning of the function.

• JavaScript does not have block
scope, so their is no advantage in
declaring variables at the place of
their first use.

117

CSC309: Introduction to Web Programming

Expression Statements
• Any expression can be used as a

statement. That can mask errors.

• Only assignment expressions and
invocation expressions should be used
as statements.

• Good:
foo();

• Bad:
foo && foo();

118

CSC309: Introduction to Web Programming

switch Statement
• Avoid using fallthrough.

• Each clause should explicitly
break or return or throw.

119

CSC309: Introduction to Web Programming

Assignment Expressions
• Do not use assignment

expressions in the condition parts
of if, while, or for.

• It is more likely that
if (a = b) { ... }

• was intended to be
if (a == b) { ... }

• Avoid tricky expressions.

120

CSC309: Introduction to Web Programming

== and !=
• Be aware that == and != do type

coercion.
• Bad

if (a == null) { ... }

• Good:
if (a === null) { ... }
if (!a) { ... }

121

CSC309: Introduction to Web Programming

Labels
• Use labels only on these

statements:
do
for
switch
while

• Never use javascript: as a label.

122

CSC309: Introduction to Web Programming

JSLint
• JSLint can help improve the

robustness and portability of your
programs.

• It enforces style rules.
• It can spot some errors that are very

difficult to find in debugging.
• It can help eliminate implied globals.
• Currently available on the web and as a

Konfabulator widget.
• Soon, in text editors and Eclipse.

http://www.JSLint.com/

	CSC309: Introduction to �Web Programming��Lecture 4
	JavaScript Overview
	Sources of Misunderstanding
	History
	Not a Web Toy
	Key Ideas
	Values
	Numbers
	NaN
	Number function
	parseInt function
	Math
	Strings
	String length
	String function
	String Methods
	Booleans
	Boolean function
	null
	undefined
	Falsy values
	Everything Else Is Objects
	Dynamic Objects
	Loosely Typed
	C
	Identifiers
	Reserved Words
	Comments
	Operators
	+
	+
	/
	== !=
	&&
	||
	!
	Bitwise
	Statements
	Break statement
	For statement
	For statement
	Switch statement
	Switch statement
	Throw statement
	Try statement
	Try Statement
	With statement
	Function statement
	Var statement
	Scope
	Return statement
	Objects
	Collections
	Object Literals
	Object Literals
	Maker Function
	Object Literals
	Object Literals
	Object Literals
	Object Literals
	Object Augmentation
	Linkage
	Linkage
	Linkage
	Inheritance
	Prototypal Inheritance
	Prototypal Inheritance
	Object Methods
	Object Construction
	Reference
	Delete
	Arrays
	length
	Array Literals
	Array Methods
	Deleting Elements
	Deleting Elements
	Arrays v Objects
	Arrays and Inheritance
	Functions
	Function operator
	lambda
	Function statement
	Inner functions
	Scope
	Closure
	Example
	Function Objects
	Method
	Invocation
	Invocation
	Method form
	Function form
	Constructor form
	this
	arguments
	Example
	Augmenting Built-in Types
	trim
	typeof
	eval
	Function function
	Built-in Type Wrappers
	(global) Object
	Global variables are evil
	Implied Global
	Namespace
	Thinking about type
	RegExp
	Threads
	 Code Conventions for the JavaScript Programming Language
	Semicolon insertion
	Comma
	Required Blocks
	Forbidden Blocks
	Variables
	Expression Statements
	switch Statement
	Assignment Expressions
	== and !=
	Labels
	JSLint

