
University of Toronto

CSC309: Introduction to
Web Programming

Lecture 6

Wael Aboulsaadat

CSC309: Introduction to Web Programming

University of Toronto

3-Tier Architecture

2

http://upload.wikimedia.org/wikipedia/en/6/66/Overview_of_a_three-tier_application.png�

CSC309: Introduction to Web Programming

University of Toronto

What: Database Systems Today

3

CSC309: Introduction to Web Programming

University of Toronto

What: Database Systems Today

4

CSC309: Introduction to Web Programming

University of Toronto

What: Database Systems Today

5

CSC309: Introduction to Web Programming

University of Toronto

Database Management System
(DBMS)
 A collection of programs that enable:
Defining (describing the structure),
Populating by data (Constructing),
Manipulating (querying, updating),
Preserving consistency,
Protecting from misuse,
Recovering from failure, and
Concurrent using
of a database.

6

CSC309: Introduction to Web Programming

University of Toronto

Steps in Database Design
1. Requirements Analysis

2. Conceptual Design

3. Logical Design

4. Schema Refinement

5. Physical Design - indexes, disk layout

6. Security Design - who accesses what, and how

7

CSC309: Introduction to Web Programming

University of Toronto

Steps in Database Design:
conceptual design
A. Define ER Model

B. Translate ER Model to Relational Model

8

CSC309: Introduction to Web Programming

University of Toronto

Entity Relation Model (ER)

 Entities
 Attributes
 Relations
 Roles

9

CSC309: Introduction to Web Programming

University of Toronto

ER: entities

 A 'thing' is called an Entity
 An entity can be an actual physical object

or a
conceptual object

 And that's it!

10

CSC309: Introduction to Web Programming

University of Toronto

ER: how to model entities?
 An entity is an object that is distinguishable from

other objects
 E.g. a specific person, a course module, an event

 Note:
 The fact that two people have the same name does not

mean that they are indeed the same entity. They could
just share the same attribute value

11

CSC309: Introduction to Web Programming

University of Toronto

ER: attributes
 An entity is represented by a set of

attributes, that is descriptive properties
possessed by all members of an entity
set.
Example:

 customer = (customer-id, customer-name,
customer-street, customer-city)

 loan = (loan-number, amount)

 Domain – the set of permitted values for
each attribute

12

CSC309: Introduction to Web Programming

University of Toronto

ER: attributes types
 Attribute types:

 Simple and composite attributes (e.g., address).

 Single-valued and multi-valued attributes
 E.g. multi-valued attribute: phone-numbers

 Derived attributes
 Can be computed from other attributes
 E.g. age, given the date of birth

13

CSC309: Introduction to Web Programming

University of Toronto

 How to distinguish between entities?

 A key of an entity is a set of one or
more attributes whose values uniquely
determine each entity.

 A Key can be simple (a single attribute)
or composite (more than one field)

ER: a special attribute – key

14

CSC309: Introduction to Web Programming

University of Toronto
2-15

ER: relations

 Association among two or more entities.
E.g., John works in Pharmacy department.

 A relation can have it’s own attributes as
well…

CSC309: Introduction to Web Programming

University of Toronto

ER: visual notation
 Rectangles represent entity sets.
 Diamonds represent relationship sets.
 Lines link attributes to entity sets and entity sets to

relationship sets.
 Ellipses represent attributes
 Underline for keys

16

CSC309: Introduction to Web Programming

University of Toronto

ER: visual notation - cont’d
 Ellipses represent attributes
 Double ellipses represent multi-valued attributes.
 Dashed ellipses denote derived attributes.

17

CSC309: Introduction to Web Programming

University of Toronto

ER: cardinality constraints
 We express cardinality constraints by

drawing either a directed line (→),
signifying “one,” or

 an undirected line (—), signifying
“many,” between the relationship and
the entity.

18

CSC309: Introduction to Web Programming

University of Toronto

 Many-to-many relationship
 A customer is associated with several

(possibly 0) loans via borrower
 A loan is associated with several (possibly 0)

customers via borrower

ER: cardinality constraints

19

CSC309: Introduction to Web Programming

University of Toronto

 One-to-many relationship
 a loan is associated with at most one customer via

borrower, a customer is associated with several
(including 0) loans via borrower

ER: cardinality constraints

20

CSC309: Introduction to Web Programming

University of Toronto

ER: cardinality constraints
 One-to-one relationship:
A customer is associated with at most one

loan via the relationship borrower
A loan is associated with at most one

customer via borrower

21

CSC309: Introduction to Web Programming

University of Toronto

 Many-to-one relationship
 a loan is associated with several (including 0)

customers via borrower, a customer is associated
with at most one loan via borrower

ER: cardinality constraints

22

CSC309: Introduction to Web Programming

University of Toronto

ER: Participation of an Entity Set in a Relationship Set

 Total participation (indicated by double line):
• every entity in the entity set participates in at least one relationship in

the relationship set
• E.g. participation of loan in borrower is total

• every loan must have a customer associated to it via borrower

23

CSC309: Introduction to Web Programming

University of Toronto

ER: Participation of an Entity Set in a Relationship Set

 Partial participation:
• some entities may not participate in any relationship in the relationship

set
• E.g. participation of customer in borrower is partial

24

CSC309: Introduction to Web Programming

University of Toronto

ER: alternative notation for
cardinality limits

25

CSC309: Introduction to Web Programming

University of Toronto

ER: roles
 Entity sets of a relationship need not be distinct

 The labels “manager” and “worker” are called roles; they specify how
employee entities interact via the works-for relationship set.

 Roles are indicated in E-R diagrams by labeling the lines that connect
diamonds to rectangles.

 Role labels are optional, and are used to clarify semantics of the
relationship

26

CSC309: Introduction to Web Programming

University of Toronto

E-R: ternary Relationship
 Suppose employees of a bank may have jobs
(responsibilities) at multiple branches, with different jobs at
different branches. Then there is a ternary relationship set
between entity sets employee, job and branch

27

CSC309: Introduction to Web Programming

University of Toronto

ER: weak entities
 A weak entity can be identified uniquely only by

considering the primary key of another (owner)
entity.
 Owner entity set and weak entity set must participate in a one-to-

many relationship set (one owner, many weak entities).
 Weak entity set must have total participation in this identifying

relationship set.
 Weak entities have only a “partial key” (dashed underline)

lot

name

agepname

DependentEmployee

ssn

Policy

costpid

28

CSC309: Introduction to Web Programming

University of Toronto

Example

29

CSC309: Introduction to Web Programming

University of Toronto

From ER Model to Relational Model

So… how do we convert an ER diagram into a
table?? Simple!!

Basic Ideas:
 Build a table for each entity set
 Build a table for each relationship set if necessary (more

on this later)
 Make a column in the table for each attribute in the entity

set
 Underline Key

30

CSC309: Introduction to Web Programming

University of Toronto

Example – Strong Entity Set

SID Name Major GPA
1234 John CS 2.8
5678 Mary EE 3.6

Student

SID Name

Major GPA

Advisor Professor

SSN Name

Dept

SSN Name Dept
9999 Smith Math
8888 Lee CS

31

CSC309: Introduction to Web Programming

University of Toronto

Representation of Weak Entity Set
 Weak Entity Set Cannot exists alone
 To build a table/schema for weak entity set

 Construct a table with one column for each attribute in
the weak entity set

 Remember to include discriminator
 Augment one extra column on the right side of the

table, put in there the primary key of the Strong Entity
Set (the entity set that the weak entity set is
depending on)

 Primary Key of the weak entity set = Discriminator +
foreign key

CSC309: Introduction to Web Programming

University of Toronto

Example – Weak Entity Set

Age Name SID
10 Bart 1234
8 Lisa 5678

Student

SID Name

Major GPA

Name
Age

Childrenhas

* key of Children is Parent_SID + Name
33

CSC309: Introduction to Web Programming

University of Toronto

Representation of Relationship Set

--This is a little more complicated--
 Unary/Binary Relationship set

 Depends on the cardinality and participation of the relationship
 Two possible approaches

 N-ary (multiple) Relationship set
 Primary Key Issue

 Identifying Relationship
 No relational model representation necessary

34

CSC309: Introduction to Web Programming

University of Toronto

Representing Relationship Set
Unary/Binary Relationship

 For one-to-one relationship w/out total participation
 Build a table with two columns, one column for each

participating entity set’s primary key. Add successive
columns, one for each descriptive attributes of the
relationship set (if any).

 For one-to-one relationship with one entity set having
total participation
 Augment one extra column on the right side of the

table of the entity set with total participation, put in
there the primary key of the entity set without
complete participation as per to the relationship.

35

CSC309: Introduction to Web Programming

University of Toronto

Example – One-to-One Relationship Set

SID ID Code S_Degree
9999 07 1234
8888 05 5678

Student

SID Name

Major GPA

ID Code

Majorstudy

* key can be either SID or Maj_ID_Co

S_Degree

36

CSC309: Introduction to Web Programming

University of Toronto

Example – One-to-One Relationship Set

SID Name Major GPA LP_S/N Hav_Cond
9999 Bart Economy -4.0 123-456 Own
8888 Lisa Physics 4.0 567-890 Loan

Student

SID Name

Major GPA

S/N #

LaptopHave

* key can be either SID or LP_S/N

Condition

Brand

1:1
Relationship

37

CSC309: Introduction to Web Programming

University of Toronto

Representing Relationship Set
Unary/Binary Relationship
 For one-to-many relationship w/out total

participation
Same thing as one-to-one

 For one-to-many/many-to-one relationship with
one entity set having total participation on
“many” side
Augment one extra column on the right side of

the table of the entity set on the “many” side,
put in there the primary key of the entity set
on the “one” side as per to the relationship.

38

CSC309: Introduction to Web Programming

University of Toronto

Example – Many-to-One Relationship Set

SID Name Major GPA SSN Semester
9999 Bart Economy -4.0 123-456 Fall 2006
8888 Lisa Physics 4.0 567-890 Fall 2005

Student

SID Name

Major GPA

SSN

Professor

* Primary key of this table is SID

Semester

Name

N:1
Relationship

Dept

Advisor

39

CSC309: Introduction to Web Programming

University of Toronto

Representing Relationship Set Unary/Binary
Relationship

 For many-to-many relationship
Same thing as one-to-one relationship without

total participation.
Primary key of this new schema is the union

of the foreign keys of both entity sets.
No augmentation approach possible…

40

CSC309: Introduction to Web Programming

University of Toronto

Representing Relationship Set N-ary Relationship

 Intuitively Simple
 Build a new table with as many columns as there are

attributes for the union of the primary keys of all
participating entity sets.

 Augment additional columns for descriptive attributes
of the relationship set (if necessary)

 The primary key of this table is the union of all
primary keys of entity sets that are on “many” side

 That is it, we are done.

41

CSC309: Introduction to Web Programming

University of Toronto

Example – N-ary Relationship Set

P-Key1 P-Key2 P-Key3 A-Key D-Attribute
9999 8888 7777 6666 Yes
1234 5678 9012 3456 No

E-Set 1

P-Key1

Another Set

* key of this table is P-Key1 + P-Key2 + P-Key3

D-Attribute

A relationship

A-Key

E-Set 2

P-Key2

E-Set 3

P-Key3

42

CSC309: Introduction to Web Programming

University of Toronto

Representing Composite Attribute
 One column for each component attribute
 NO column for the composite attribute itself

Professor

SSN Name

Address

SSN Name Street City
9999 Dr. Smith 50 1st St. Fake City
8888 Dr. Lee 1 B St. San Jose

Street City

43

CSC309: Introduction to Web Programming

University of Toronto

Representing Multivalue Attribute

 For each multivalue attribute in an entity
set/relationship set
 Build a new relation schema with two columns
One column for the primary keys of the entity

set/relationship set that has the multivalue attribute
 Another column for the multivalue attributes. Each

cell of this column holds only one value. So each
value is represented as an unique tuple

 Primary key for this schema is the union of all
attributes

44

CSC309: Introduction to Web Programming

University of Toronto

Example – Multivalue attribute

SID Name Major GPA
1234 John CS 2.8
5678 Homer EE 3.6

Student

SID Name

Major GPA

Stud_SID Children
1234 Johnson
1234 Mary
5678 Bart
5678 Lisa
5678 Maggie

Children

The key for this table is
Student_SID + Children,
the union of all attributes

45

CSC309: Introduction to Web Programming

University of Toronto

SQL: Structure Query Language

Data Definition
Language (DDL)

Data Manipulation
Language (DML)

46

CSC309: Introduction to Web Programming

University of Toronto

Data Definition Language (DDL)

 The schema for each relation.
 The domain of values associated with each attribute.
 Integrity constraints (what’s valid….)
 The set of indices (keys..) to be maintained for each

relations.
 Security and authorization information for each relation.
 The physical storage structure of each relation on disk.

Allows the specification of not only a set of relations but also
information about each relation, including:

47

CSC309: Introduction to Web Programming

University of Toronto

Domains
 Domains specify allowable values for

attributes.
 Two categories:
Elementary (predefined by the standard);
User-defined.

48

CSC309: Introduction to Web Programming

University of Toronto

Elementary Domains — Character
 Character

 Single characters or strings;
 Strings may be of variable length;
 A Character set different from the default one can be

used (e.g., Latin, Greek, Cyrillic, etc.)
 Syntax:

character [varying] [(Length)]
[character set CharSetName]

 It is possible to use char and varchar, for
character and character varying respectively

49

CSC309: Introduction to Web Programming

University of Toronto

More Elementary Domains
 Bit

 Single Boolean values or strings of Boolean values (may
be variable in length);

 Syntax:
bit [varying] [(Length)]

 Exact numeric domains
 Exact values, integer or with a fractional part
 Four alternatives: numeric(6,3)

numeric [(Precision [, Scale])]
decimal [(Precision [, Scale])]
integer
smallint # of significant digits

decimal digits

50

CSC309: Introduction to Web Programming

University of Toronto

Approximate Numeric Domains
 Approximate numeric domains
Approximate real values
Based on a floating point representation

float [(Precision)]
double precision

51

CSC309: Introduction to Web Programming

University of Toronto

Temporal Instant Domains
 Temporal instants

date has fields year,month,day

time [(Precision)] [with time zone]
has fields hour,minute,second

timestamp [(Precision)] [with time zone]

 Temporal intervals
interval FirstUnitOfTime [to LastUnitOfTime]

 Units of time are divided into two groups:
 (i) year, month,
 (ii) day, hour, minute, second

 For example, year(5) to month allows intervals up to
99999yrs + 11mo

52

CSC309: Introduction to Web Programming

University of Toronto

User-Defined Domains
 Comparable to definitions of variable types in

programming languages.
 A domain is characterized by name, elementary

domain, default value, set of constraints
 Syntax:
create domain DomainName
as ElementaryDomain [DefaultValue] [
Constraints]

 Example:
create domain Mark as smallint default null

53

CSC309: Introduction to Web Programming

University of Toronto

Default Domain Values
 Define the value that the attribute must assume

when a value is not specified during row
insertion.

 Syntax:
default < GenericValue | user | null >

 GenericValue represents a value compatible
with the domain, in the form of a constant or an
expression.

 user is the login name of the user who assigns
a value to this attribute.

54

CSC309: Introduction to Web Programming

University of Toronto

Summary: domain types in SQL
 char(n). Fixed length character string, with user-specified length n.
 varchar(n). Variable length character strings, with user-specified

maximum length n.
 int. Integer (a finite subset of the integers that is machine-

dependent).
 smallint. Small integer (a machine-dependent subset of the integer

domain type).
 numeric(p,d). Fixed point number, with user-specified precision of

p digits, with n digits to the right of decimal point.
 real, double precision. Floating point and double-precision

floating point numbers, with machine-dependent precision.
 float(n). Floating point number, with user-specified precision of at

least n digits.
 Null values are allowed in all the domain types. Declaring an

attribute to be not null prohibits null values for that attribute.
 create domain construct in SQL-92 creates user-defined domain

types
55

CSC309: Introduction to Web Programming

University of Toronto

Summary: domain types in SQL (cont.)
 date. Dates, containing a (4 digit) year, month and date

 E.g. date ‘2001-7-27’
 time. Time of day, in hours, minutes and seconds.

 E.g. time ’09:00:30’ time ’09:00:30.75’
 timestamp: date plus time of day

 E.g. timestamp ‘2001-7-27 09:00:30.75’
 Interval: period of time

 E.g. Interval ‘1’ day
 Subtracting a date/time/timestamp value from another gives an interval value
 Interval values can be added to date/time/timestamp values

56

CSC309: Introduction to Web Programming

University of Toronto

Schema Definition
 A schema is a collection of objects: domains,

tables, indexes, assertions, views, privileges
 A schema has a name and an owner (who

determines authorization privileges)
 Syntax:

create schema [SchemaName]
[[authorization] Authorization]
{ SchemaElementDefinition }

57

CSC309: Introduction to Web Programming

University of Toronto

Table Definition
 An SQL table consists of an ordered set of

attributes, and a (possibly empty) set of constraints
 Statement create table defines a relation

schema, creating an empty instance.
 Syntax:

create table TableName
(AttributeName Domain [DefaultValue] [Constraints]
{, AttributeName Domain [DefaultValue] [Constraints] }
[OtherConstraints])

58

CSC309: Introduction to Web Programming

University of Toronto

Example Database
EMPLOYEE FirstName Surname Dept Office Salary City

 Mary Brown Administration 10 45 London
 Charles White Production 20 36 Toulouse
 Gus Green Administration 20 40 Oxford
 Jackson Neri Distribution 16 45 Dover
 Charles Brown Planning 14 80 London
 Laurence Chen Planning 7 73 Worthing
 Pauline Bradshaw Administration 75 40 Brighton
 Alice Jackson Production 20 46 Toulouse

DEPARTMENT DeptName Address City
 Administration Bond Street London
 Production Rue Victor Hugo Toulouse
 Distribution Pond Road Brighton
 Planning Bond Street London
 Research Sunset Street San José

59

CSC309: Introduction to Web Programming

University of Toronto

Example of create table
Employee:

RegNo is 6 characters
FirstName is 20 characters
Surname is 20 characters
Salary is 9 numeric
City is 15 characters

EMPLOYEE FirstName Surname Dept RegNo

Salar

City
 Mary Brown Administration 10 45 London
 Charles White Production 20 36 Toulouse
 Gus Green Administration 20 40 Oxford
 Jackson Neri Distribution 16 45 Dover
 Charles Brown Planning 14 80 London
 Laurence Chen Planning 7 73 Worthing
 Pauline Bradshaw Administration 75 40 Brighton
 Alice Jackson Production 20 46 Toulouse

60

CSC309: Introduction to Web Programming

University of Toronto

Example of create table
create table Employee
(

RegNo character(6),
FirstName character(20),
Surname character(20),
Salary numeric(9),
City character(15)

);
EMPLOYEE FirstName Surname Dept RegNo

Salar

City

 Mary Brown Administration 10 45 London
 Charles White Production 20 36 Toulouse
 Gus Green Administration 20 40 Oxford
 Jackson Neri Distribution 16 45 Dover
 Charles Brown Planning 14 80 London
 Laurence Chen Planning 7 73 Worthing
 Pauline Bradshaw Administration 75 40 Brighton
 Alice Jackson Production 20 46 Toulouse

61

CSC309: Introduction to Web Programming

University of Toronto

Intra-Relational Constraints
 Constraints are conditions that must be verified by

every database instance
 Intra-relational constraints involve a single relation

 not null (on single attributes)
 unique: permits the definition of keys; syntax:

 for single attributes: unique, after the domain
 for multiple: unique (Attribute {, Attribute })

 primary key: defines the primary key (once for each
table; implies not null); syntax like unique

 check: described later

62

CSC309: Introduction to Web Programming

University of Toronto

Example of Intra-Relational
Constraints
 Each pair of FirstName and Surname uniquely

identifies each element
FirstName char(20) not null,
Surname char(20) not null,
unique(FirstName,Surname)

63

CSC309: Introduction to Web Programming

University of Toronto

create table Employee
(

RegNo char(6),
FirstName char(20) not null,
Surname char(20) not null,
Dept char(15),
Salary numeric(9) default 0,
City char(15),
primary key(RegNo),
foreign key(Dept) references Department(DeptName),
unique(FirstName,Surname)

);

Example

64

CSC309: Introduction to Web Programming

University of Toronto

Inter-Relational Constraints
Constraints may involve several relations:
 check: checks whether an assertion is true;
 references and foreign key permit the

definition of referential integrity constraints;
 Syntax for single attributes

references after the domain
 Syntax for multiple attributes

foreign key (Attribute {, Attribute })
references ...

 It is possible to associate reaction policies to
violations of referential integrity constraints.

65

CSC309: Introduction to Web Programming

University of Toronto

Reaction Policies
Violations arise from

 (a) updates on referred attribute or
 (b) row deletions.

Reactions operate on internal table, after changes to
an external table.

 Reactions are:
 cascade: propagate the change;
 set null: nullify the referring attribute;
 set default: assign default value to the referring

attribute;
 no action: forbid the change on external table.

 Reactions may depend on the event; syntax:
on < delete | update >

< cascade | set null | set default | no action >

66

CSC309: Introduction to Web Programming

University of Toronto

Note

 “Correct” policy is a design decision
 E.g., what does it mean if a creditcard

goes away? What if a creditcard account
changes its number?

67

CSC309: Introduction to Web Programming

University of Toronto

create table Employee
(

RegNo char(6),
FirstName char(20) not null,
Surname char(20) not null,
Dept char(15),
Salary numeric(9) default 0,
City char(15),
primary key(RegNo),
foreign key(Dept)

references Department(DeptName)
on delete set null
on update cascade,

unique(FirstName,Surname)
);

Example

68

CSC309: Introduction to Web Programming

University of Toronto

Database Management System (DBMS)

 A collection of programs that enable:
Defining (describing the structure),
 Populating by data (Constructing),
Manipulating (querying, updating),
Preserving consistency,
Protecting from misuse,
Recovering from failure, and
Concurrent using
of a database.

69

CSC309: Introduction to Web Programming

University of Toronto

Modification of the Database – Insertion
 Add a new tuple to account table

insert into account
values (‘A-9732’, ‘Perryridge’,1200);

 or equivalently
insert into account (branch-name, balance, account-
number)

values (‘Perryridge’, 1200, ‘A-9732’)

 Add a new tuple to account with balance set to null
insert into account

values (‘A-777’,‘Perryridge’, null)

70

CSC309: Introduction to Web Programming

University of Toronto

Modification of the Database – Updates

 Increase all accounts with balances over
$10,000 by 6%, all other accounts receive 5%.

Write two update statements:
update account
set balance = balance ∗ 1.06
where balance > 10000;

update account
set balance = balance ∗ 1.05
where balance ≤ 10000;

71

CSC309: Introduction to Web Programming

University of Toronto

 Examples:
alter table Department

add column NoOfOffices numeric(4);

drop table Department cascade;

Drop and Alter Table – cont’d

72

CSC309: Introduction to Web Programming

University of Toronto

Database Management System (DBMS)

 A collection of programs that enable:
Defining (describing the structure),
Populating by data (Constructing),
 Manipulating (querying, updating),
Preserving consistency,
Protecting from misuse,
Recovering from failure, and
Concurrent using
of a database.

73

CSC309: Introduction to Web Programming

University of Toronto

Cross Product

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1 S1

S1 X R1 =

74

CSC309: Introduction to Web Programming

University of Toronto

Natural Join
sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1 S1

S1 R1 =

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

75

CSC309: Introduction to Web Programming

University of Toronto

Outer Join
 Relation loan

customer-name loan-number
Jones
Smith
Hayes

L-170
L-230
L-155

3000
4000
1700

loan-number amount
L-170
L-230
L-260

branch-name
Downtown
Redwood
Perryridge

 Relation borrower

76

CSC309: Introduction to Web Programming

University of Toronto

Outer Join – Example
 Inner Join: loan Borrower

loan-number amount

L-170
L-230

3000
4000

customer-name

Jones
Smith

branch-name

Downtown
Redwood

Jones
Smith
null

loan-number amount
L-170
L-230
L-260

3000
4000
1700

customer-namebranch-name
Downtown
Redwood
Perryridge

Left Outer Join: loan Borrower

77

CSC309: Introduction to Web Programming

University of Toronto

Outer Join
 Right Outer Join : loan borrower

loan borrower
 Full Outer Join

loan-number amount
L-170
L-230
L-155

3000
4000
null

customer-name
Jones
Smith
Hayes

branch-name
Downtown
Redwood
null

loan-number amount

L-170
L-230
L-260
L-155

3000
4000
1700
null

customer-name

Jones
Smith
null
Hayes

branch-name

Downtown
Redwood
Perryridge
null

78

CSC309: Introduction to Web Programming

University of Toronto

SQL Query

 The generic query:
select T1.Attr11, …, Th.Attrhm
from Table1 T1, …, Tablen Tn
where Condition

79

CSC309: Introduction to Web Programming

University of Toronto

Example Database
EMPLOYEE FirstName Surname Dept Office Salary City

 Mary Brown Administration 10 45 London
 Charles White Production 20 36 Toulouse
 Gus Green Administration 20 40 Oxford
 Jackson Neri Distribution 16 45 Dover
 Charles Brown Planning 14 80 London
 Laurence Chen Planning 7 73 Worthing
 Pauline Bradshaw Administration 75 40 Brighton
 Alice Jackson Production 20 46 Toulouse

DEPARTMENT DeptName Address City
 Administration Bond Street London
 Production Rue Victor Hugo Toulouse
 Distribution Pond Road Brighton
 Planning Bond Street London
 Research Sunset Street San José

80

CSC309: Introduction to Web Programming

University of Toronto

* in the Target List

 "Find all the information relating
to employees named Brown":

select *
from Employee
where Surname = ‘Brown’;

 Result:
FirstName Surname Dept Office Salary City
Mary Brown Administration 10 45 London
Charles Brown Planning 14 80 London

 FirstName Surname Dept RegNo

Salar

City
 Mary Brown Administration 10 45 London
 Charles White Production 20 36 Toulouse
 Gus Green Administration 20 40 Oxford
 Jackson Neri Distribution 16 45 Dover
 Charles Brown Planning 14 80 London
 Laurence Chen Planning 7 73 Worthing
 Pauline Bradshaw Administration 75 40 Brighton
 Alice Jackson Production 20 46 Toulouse

81

CSC309: Introduction to Web Programming

University of Toronto

Predicate
Conjunction
 "Find the first names and surnames of employees who

work in office number 20 of the Administration
department":

select FirstName, Surname
from Employee
where Office = ‘20’ and

Dept = ‘Administration’

 Result: FirstName Surname
Gus Green

 FirstName Surname Dept RegNo

Salar

City
 Mary Brown Administration 10 45 London
 Charles White Production 20 36 Toulouse
 Gus Green Administration 20 40 Oxford
 Jackson Neri Distribution 16 45 Dover
 Charles Brown Planning 14 80 London
 Laurence Chen Planning 7 73 Worthing
 Pauline Bradshaw Administration 75 40 Brighton
 Alice Jackson Production 20 46 Toulouse

82

CSC309: Introduction to Web Programming

University of Toronto

Predicate Disjunction
 "Find the first names and
surnames of employees
who work in either the Administration or the Production

department":
select FirstName, Surname
from Employee
where Dept = ‘Administration’ or

Dept = ‘Production’

 Result:
FirstName Surname
Mary Brown
Charles White
Gus Green
Pauline Bradshaw
Alice Jackson

 FirstName Surname Dept RegNo

Salar

City
 Mary Brown Administration 10 45 London
 Charles White Production 20 36 Toulouse
 Gus Green Administration 20 40 Oxford
 Jackson Neri Distribution 16 45 Dover
 Charles Brown Planning 14 80 London
 Laurence Chen Planning 7 73 Worthing
 Pauline Bradshaw Administration 75 40 Brighton
 Alice Jackson Production 20 46 Toulouse

83

CSC309: Introduction to Web Programming

University of Toronto

Complex
Logical Expressions
 "Find the first names of

employees named Brown who work in the
Administration department or the Production
department":

select FirstName
from Employee
where Surname = ‘Brown’ and

(Dept = ‘Administration’ or
Dept = ‘Production’)

 Result: FirstName
Mary

 FirstName Surname Dept RegNo

Salar

City
 Mary Brown Administration 10 45 London
 Charles White Production 20 36 Toulouse
 Gus Green Administration 20 40 Oxford
 Jackson Neri Distribution 16 45 Dover
 Charles Brown Planning 14 80 London
 Laurence Chen Planning 7 73 Worthing
 Pauline Bradshaw Administration 75 40 Brighton
 Alice Jackson Production 20 46 Toulouse

84

CSC309: Introduction to Web Programming

University of Toronto

Another Example: Drivers and
Cars

DRIVER FirstName Surname DriverID
 Mary Brown VR 2030020Y
 Charles White PZ 1012436B
 Marco Neri AP 4544442R

AUTOMOBILE CarRegNo Make Model DriverID
 ABC 123 BMW 323 VR 2030020Y
 DEF 456 BMW Z3 VR 2030020Y
 GHI 789 Lancia Delta PZ 1012436B
 BBB 421 BMW 316 MI 2020030U

85

CSC309: Introduction to Web Programming

University of Toronto

Left Join
 "Find all drivers and their cars, if any":

select FirstName,Surname,
Driver.DriverID,CarRegNo,Make,Model

from Driver left join Automobile on
(Driver.DriverID = Automobile.DriverID)

 Result:

FirstName Surname DriverID CarRegNo Make Model
Mary Brown VR 2030020Y ABC 123 BMW 323
Mary Brown VR 2030020Y DEF 456 BMW Z3
Charles White PZ 1012436B GHI 789 Lancia Delta
Marco Neri AP 4544442R NULL NULL NULL

86

CSC309: Introduction to Web Programming

University of Toronto

Full Join
 "Find all possible drivers and their cars":

select FirstName,Surname,Driver.DriverID
CarRegNo, Make, Model

from Driver full join Automobile on
(Driver.DriverID = Automobile.DriverID)

 Result:

FirstName Surname DriverID CarRegNo Make Model
Mary Brown VR 2030020Y ABC 123 BMW 323
Mary Brown VR 2030020Y DEF 456 BMW Z3
Charles White PZ 1012436B GHI 789 Lancia Delta
Marco Neri AP 4544442R NULL NULL NULL
NULL NULL NULL BBB 421 BMW 316

87

University of Toronto

JDBC

CSC309: Introduction to Web Programming

University of Toronto

Programs with Embedded SQL

Host language + Embedded SQL

Preprocessor

Host Language + function calls

Host language compiler

Host language program

Preprocessor

Host language compiler

Call-level
interface (CLI):
ODBC,JDBC,

ADO

89

CSC309: Introduction to Web Programming

University of Toronto

JDBC
 Call-level interface (CLI) for executing SQL

from a Java program
 SQL statement is constructed at run time as

the value of a Java variable (as in dynamic
SQL)

 JDBC passes SQL statements to the
underlying DBMS. Can be interfaced to
any DBMS that has a JDBC driver

 Part of SQL:2003

90

CSC309: Introduction to Web Programming

University of Toronto

JDBC Run-Time Architecture

DBMS

application driver
manager

DB/2
driver

SQLServer
driver

Oracle
driver

DB/2
database

SQLServer
database

Oracle
database

91

CSC309: Introduction to Web Programming

University of Toronto

Steps to execute queries using
JDBC

1. Register Oracle Driver
DriverManager.registerDriver(new oracle.jdbc.OracleDriver())

2. Establish connection to DB server
Connection con =
DriverManager.getConnection(<url>,<username>,<password>);
<url> identifies which Oracle Driver to use, connect to which
database, on which port and what is the service name.

3. Create Statement
Statement sta = con.createStatement();

92

CSC309: Introduction to Web Programming

University of Toronto

Steps to execute queries using JDBC
(contd..)

4. Execute Query
ResultSet query = sta.executeQuery(<Query>);

5. Display/Process Result
while(query.next()) {
//process data from tuples.
}

6. Close connection
query.close();
sta.close();
con.close();

93

CSC309: Introduction to Web Programming

University of Toronto

Executing a Query
import java.sql.*; -- import all classes in package java.sql

Class.forName (driver name); // static method of class Class
// loads specified driver

Connection con = DriverManager.getConnection(Url, Id, Passwd);
• Static method of class DriverManager; attempts to

connect to DBMS
• If successful, creates a connection object, con, for

managing the connection

Statement stat = con.createStatement ();
• Creates a statement object stat
• Statements have executeQuery() method

94

CSC309: Introduction to Web Programming

University of Toronto

Executing a Query (cont’d)
String query = “SELECT T.StudId FROM Transcript T” +

“WHERE T.CrsCode = ‘cse305’ ” +
“AND T.Semester = ‘S2000’ ”;

ResultSet res = stat.executeQuery (query);
• Creates a result set object, res.
• Prepares and executes the query.
• Stores the result set produced by execution in res

(analogous to opening a cursor).
• The query string can be constructed at run time (as above).
• The input parameters are plugged into the query when

the string is formed (as above)

95

CSC309: Introduction to Web Programming

University of Toronto

String query = “SELECT T.StudId FROM Transcript T” +
“WHERE T.CrsCode = ? AND T.Semester = ?”;

PreparedStatement ps = con.prepareStatement (query);
• Prepares the statement
• Creates a prepared statement object, ps, containing the

prepared statement
• Placeholders (?) mark positions of in parameters;

special API is provided to plug the actual values in
positions indicated by the ?’s

Preparing and Executing a Query

placeholders

96

CSC309: Introduction to Web Programming

University of Toronto

Preparing and Executing a Query (cont’d)
String crs_code, semester;
………
ps.setString(1, crs_code); // set value of first in parameter
ps.setString(2, semester); // set value of second in parameter

ResultSet res = ps.executeQuery ();
• Creates a result set object, res
• Executes the query
• Stores the result set produced by execution in res

while (res.next ()) { // advance the cursor
j = res.getInt (“StudId”); // fetch output int-value
…process output value…

}

97

CSC309: Introduction to Web Programming

University of Toronto

Result Sets and Cursors
 Three types of result sets in JDBC:
Forward-only: not scrollable
Scroll-insensitive: scrollable; changes made to

underlying tables after the creation of the result
set are not visible through that result set

Scroll-sensitive: scrollable; updates and deletes
made to tuples in the underlying tables after the
creation of the result set are visible through the
set

98

CSC309: Introduction to Web Programming

University of Toronto

Result Set

 Any result set type can be declared read-only or
updatable – CONCUR_UPDATABLE (assuming
SQL query satisfies the conditions for updatable
views)

 Updatable: Current row of an updatable result set
can be changed or deleted, or a new row can be
inserted. Any such change causes changes to
the underlying database table

Statement stat = con.createStatement (
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

res.updateString (“Name”, “John”); // change the attribute “Name” of
// current row in the row buffer.

res.updateRow (); // install changes to the current row buffer
// in the underlying database table

99

CSC309: Introduction to Web Programming

University of Toronto

Handling Exceptions

 try/catch is the basic structure within which an
SQL statement should be embedded

 If an exception is thrown, an exception object, ex,
is created and the catch clause is executed

 The exception object has methods to print an
error message, return SQLSTATE, etc.

try {
...Java/JDBC code...

} catch (SQLException ex) {
…exception handling code...

}

100

CSC309: Introduction to Web Programming

University of Toronto

JMS

101

CSC309: Introduction to Web Programming

University of Toronto

What is JMS?

 A specification that describes a common way for
Java programs to create, send, receive and read
distributed enterprise messages

 loosely coupled communication
 Asynchronous messaging
 Reliable delivery

 A message is guaranteed to be delivered once and only once.
 Outside the specification

 Security services
 Management services

102

CSC309: Introduction to Web Programming

University of Toronto

A JMS Application

 JMS Clients
 Java programs that send/receive messages

 Messages
 Administered Objects

 preconfigured JMS objects created by an admin for the use of
clients

 ConnectionFactory, Destination (queue or topic)
 JMS Provider

 messaging system that implements JMS and administrative
functionality

103

CSC309: Introduction to Web Programming

University of Toronto

JMS Administration

Administrative
Tool JNDI Namespace

JMS Client JMS Provider

Bind

Lookup

Logical
Connection

104

CSC309: Introduction to Web Programming

University of Toronto

JMS Messaging Domains

 Point-to-Point (PTP)
built around the concept of message queues
each message has only one consumer

 Publish-Subscribe systems
uses a “topic” to send and receive messages
each message has multiple consumers

105

CSC309: Introduction to Web Programming

University of Toronto

Point-to-Point Messaging

Client1 Client2Queue
sends

acknowledges

consumes
Msg

Msg

106

CSC309: Introduction to Web Programming

University of Toronto

Publish/Subscribe Messaging

Client1

Client2

publishes
subscribes

subscribes

Msg

Topic

Client3

delivers

delivers

107

CSC309: Introduction to Web Programming

University of Toronto

Message Consumptions

 Synchronously
 A subscriber or a receiver explicitly fetches the message from

the destination by calling the receive method.
 The receive method can block until a message arrives or can

time out if a message does not arrive within a specified time
limit.

 Asynchronously
 A client can register a message listener with a consumer.
 Whenever a message arrives at the destination, the JMS

provider delivers the message by calling the listener's
onMessage() method.

108

CSC309: Introduction to Web Programming

University of Toronto

JMS API Programming Model

Connection

creates creates

creates

MsgDestination

receives
fromsends to

Connection
Factory

Destination

Message
ConsumerSession

Message
Producer

creates

109

CSC309: Introduction to Web Programming

University of Toronto

JMS Client Example
 Setting up a connection and creating a

session
InitialContext jndiContext=new InitialContext();
//look up for the connection factory
ConnectionFactory cf=jndiContext.lookup(connectionfactoryname);
//create a connection
Connection connection=cf.createConnection();
//create a session
Session session=connection.createSession(false,Session.AUTO_ACKNOWLEDGE);
//create a destination object
Destination dest1=(Queue) jndiContext.lookup(“/jms/myQueue”); //for PointToPoint
Destination dest2=(Topic)jndiContext.lookup(“/jms/myTopic”); //for publish-subscribe

110

CSC309: Introduction to Web Programming

University of Toronto

Producer Sample

 Setup connection and create a session
 Creating producer

MessageProducer producer=session.createProducer(dest1);
 Send a message

Message m=session.createTextMessage();
m.setText(“just another message”);
producer.send(m);

 Closing the connection
connection.close();

111

CSC309: Introduction to Web Programming

University of Toronto

Consumer Sample
(Synchronous)
 Setup connection and create a session
 Creating consumer

MessageConsumer consumer=session.createConsumer(dest1);

 Start receiving messages
connection.start();
Message m=consumer.receive();

112

CSC309: Introduction to Web Programming

University of Toronto

Consumer Sample
(Asynchronous)
 Setup the connection, create a session
 Create consumer
 Registering the listener

MessageListener listener=new myListener();
 consumer.setMessageListener(listener);

 myListener should have onMessage()
public void onMessage(Message msg){

//read the massage and do computation
}

113

CSC309: Introduction to Web Programming

University of Toronto

Listener Example
public void onMessage(Message message) {

TextMessage msg = null;
try {

if (message instanceof TextMessage) {
msg = (TextMessage) message;
System.out.println("Reading message: " + msg.getText());

} else {
System.out.println("Message of wrong type: " +

message.getClass().getName());
}

} catch (JMSException e) {
System.out.println("JMSException in onMessage(): " + e.toString());

} catch (Throwable t) {
System.out.println("Exception in onMessage():" + t.getMessage());

}
}

114

CSC309: Introduction to Web Programming

University of Toronto

JMS Messages

 Message Header
 used for identifying and routing messages
 contains vendor-specified values, but could also

contain application-specific data
 typically name/value pairs

 Message Properties (optional)
 Message Body(optional)

 contains the data
 five different message body types in the JMS

specification

115

CSC309: Introduction to Web Programming

University of Toronto

JMS Message Types

Message Type Contains Some Methods
TextMessage String getText,setText

MapMessage set of name/value pairs setString,setDouble,setLo
ng,getDouble,getString

BytesMessage stream of uninterpreted
bytes

writeBytes,readBytes

StreamMessage stream of primitive
values

writeString,writeDouble,
writeLong,readString

ObjectMessage serialize object setObject,getObject

116

	CSC309: Introduction to �Web Programming��Lecture 6
	3-Tier Architecture
	What: Database Systems Today
	What: Database Systems Today
	What: Database Systems Today
	Database Management System (DBMS)
	Steps in Database Design
	Steps in Database Design: conceptual design
	Entity Relation Model (ER)
	ER: entities
	ER: how to model entities?
	ER: attributes
	ER: attributes types
	Slide Number 14
	ER: relations
	ER: visual notation
	ER: visual notation - cont’d
	ER: cardinality constraints
	ER: cardinality constraints
	ER: cardinality constraints
	ER: cardinality constraints
	ER: cardinality constraints
	ER: Participation of an Entity Set in a Relationship Set
	ER: Participation of an Entity Set in a Relationship Set
	ER: alternative notation for cardinality limits
	ER: roles
	E-R: ternary Relationship
	ER: weak entities
	Example
	From ER Model to Relational Model
	Example – Strong Entity Set
	Representation of Weak Entity Set
	Example – Weak Entity Set
	Representation of Relationship Set
	Representing Relationship Set�Unary/Binary Relationship
	Example – One-to-One Relationship Set
	Example – One-to-One Relationship Set
	Representing Relationship Set�Unary/Binary Relationship
	Example – Many-to-One Relationship Set
	Representing Relationship Set Unary/Binary Relationship
	Representing Relationship Set N-ary Relationship
	Example – N-ary Relationship Set
	Representing Composite Attribute
	Representing Multivalue Attribute
	Example – Multivalue attribute
	SQL: Structure Query Language
	Data Definition Language (DDL)
	Domains
	Elementary Domains — Character
	More Elementary Domains
	Approximate Numeric Domains
	Temporal Instant Domains
	User-Defined Domains
	Default Domain Values
	Summary: domain types in SQL
	Summary: domain types in SQL (cont.)
	Schema Definition
	Table Definition
	Example Database
	Example of create table
	Example of create table
	Intra-Relational Constraints
	Example of Intra-Relational Constraints
	Example
	Inter-Relational Constraints
	Reaction Policies
	Note
	Example
	Database Management System (DBMS)
	Modification of the Database – Insertion
	Modification of the Database – Updates
	Drop and Alter Table – cont’d
	Database Management System (DBMS)
	Cross Product
	Natural Join
	Outer Join
	Outer Join – Example
	Outer Join
	 SQL Query
	Example Database
	* in the Target List
	Predicate �Conjunction
	Predicate Disjunction
	Complex �Logical Expressions
	Another Example: Drivers and Cars
	Left Join
	Full Join
	JDBC
	Programs with Embedded SQL
	JDBC
	JDBC Run-Time Architecture
	Steps to execute queries using JDBC
	Steps to execute queries using JDBC (contd..)
	Executing a Query
	Executing a Query (cont’d)
	Preparing and Executing a Query
	Preparing and Executing a Query (cont’d)
	Result Sets and Cursors
	Result Set
	Handling Exceptions
	JMS
	What is JMS?
	A JMS Application
	JMS Administration
	JMS Messaging Domains
	Point-to-Point Messaging
	Publish/Subscribe Messaging
	Message Consumptions
	JMS API Programming Model
	JMS Client Example
	Producer Sample
	Consumer Sample (Synchronous)
	Consumer Sample (Asynchronous)
	Listener Example
	JMS Messages
	JMS Message Types

