
CSCC40 Information Systems Analysis and Design

Software Architectures -- 1

XVIII. Software Architectures
Software Architectures

UML Packages
Client-Server vs Peer-to-Peer

Horizontal Layers and Vertical Partitions
3-Tier and 4-Tier Architectures

The Model-View-Controller Architecture
Broker Architectures for Distributed Systems

Acknowledgment: these slides are based on Prof. John Mylopoulos slides
which are used to teach a similar course in the University of Toronto

– St. George campus. Used with Permission.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 2

Software Architectures
 A software architecture defines the components of a software system

and how they use each other’s functionality and data.
 For example, the client-server architecture consists of servers, which

support some kind of service, and clients which request and use
server services. With a client-server architecture, an information
system need not be seen as a monolithic program.

 Instead, input/output functions are placed on clients, running on PCs
and workstations; data storage is assigned to a server, implemented
in terms of a DBMS (e.g., DB2, Ingres, Sybase or Oracle) and placed
on a mainframe or mini. Consistency checking is located with the
server, applications are located with clients.

 Thick servers offer a lot of functionality, thin ones little.
 Thick clients have their own services, thin ones get almost

everything from servers.
 In these lecture notes, we emphasize object-oriented architectures.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 3

Subsystems
 A subsystem is a component of a system or of another

subsystem.
 Modules or components are atomic subsystems (which are not

further decomposed into subsystems.)
 It’s useful to subdivide a software system into subsystems

 For better-managed software development;
 For improved reuse potential (through components);
 For improved portability (platform-specific code isolated to

particular subsystems.)
 For easier maintenance.

 Each subsystem has a well-defined interface with respect to the
rest of the system.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 4© 2003 Jaelson

System

Subsystem Subsystem Subsystem

Subsystem
Subsystem

Subsystem

Subsystem

Subsystem

...

Subsystem
Subsystem

Subsystem
Subsystem

Module
Module

Module

Module
Module

Module

...

componentOf

Modules/ Components

CSCC40 Information Systems Analysis and Design

Software Architectures -- 5

Components and Connectors
 The architecture shown in the previous slide is one example

of a software architecture where the nodes represent
subsystems or modules and the connectors between them
describe “componentOf” relationships.

 There are many others kinds of connectors that can be used,
such as:
 Uses -- one component uses data defined in another

component;
 Calls -- one component calls methods defined in another

component;
 I/O -- the output of one component is fed as input to

another;

CSCC40 Information Systems Analysis and Design

Software Architectures -- 6

The Software
Bookshelf

CSCC40 Information Systems Analysis and Design

Software Architectures -- 7

Architectural Styles
 It is useful to classify software architectures into classes of

architectural styles.
 For example, the client-server architecture discussed earlier is

an architectural style.
 The styles we’ll discuss below are as follows:

 Pipes and filters;
 Object-Orientation;
 Event-Based
 Layered;
 Repository-Based;
 Client-Server;
 Three-Tier;
 …more...

CSCC40 Information Systems Analysis and Design

Software Architectures -- 8

Packages
 A package in UML is a grouping of elements; these elements

 May be packages (representing subsystems or modules);
 May be classes;
 Each element of a software architecture (subsystem, module

or class) is owned by a single package;
 Packages may reference other packages.

 There are many criteria to use in decomposing a software system
into packages:
 Ownership -- who is responsible from which diagrams;
 Application -- each application has its own obvious partitions;

e.g., a university dept model may be partitioned into staff,
courses, degree programmes,…

 Clusters of classes used together, e.g., course, course
description, instructor, student,…

CSCC40 Information Systems Analysis and Design

Software Architectures -- 9

A Package Diagram

 A dependency means that
if you change a class in one
package (Meetings), you
may have to change
something in the other
(Constraints).

 The concept is similar to
compilation dependencies.

 It’s desirable to minimize
dependency cycles, if at all
possible.

Persons

Meetings

Constraints

dependency

CSCC40 Information Systems Analysis and Design

Software Architectures -- 10

Decomposition into Subsystems
 A software system may be decomposed into horizontal layers,

and/or vertical partitions.
 For a horizontal layer decomposition, each layer corresponds to

one or more subsystems, and each layer uses services provided
by the layers below it.

 Layered architectures have two forms:
 closed architecture - each layer only uses services of the

layer immediatebelow;
 open architecture - a layer can use services from any lower

layer.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 11

Closed vs Open
Layered Architecture

CSCC40 Information Systems Analysis and Design

Software Architectures -- 12

 Closed layered architectures
 Minimize dependencies between layers and reduce the impact

of a change to the interface of any one layer.
 Open layered architectures

 Lead to more compact code, since the services of all lower
layers can be accessed directly without the need for extra
program code to pass messages through each intervening
layer;

 Break the encapsulation of layers, increase dependencies
between layers and increase the complexity of changes to the
system.

Closed vs Open
Layered Architectures

CSCC40 Information Systems Analysis and Design

Software Architectures -- 13

Client Server Architectures
 A client server architecture consists of service consumers

(clients) and service providers (servers). Clients and servers
may or may not be running on dedicated machines.

 Information exchange between clients and servers is done
through messages.

 Service requests and responses are accomplished through one
of the following protocols:
Remote Procedure Call (RPC) -- client invokes a remotely

located procedure, which is executed and the results sent to
the client; RPC is widely supported;

Remote Data Access (RDA) -- here the invoked procedure is
a database query (say, in SQL) and the response is an often
large set of data; supported by DBMS vendors;

Queued Message Processing -- here requests are queued
and processed whenever possible.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 14

Three-Tier Client Server Architectures
 Used widely in industry

 E.g., architecture for a meeting scheduling system (MSS)

Interface Application Data
client server serverclient

request request

response response

MSS Client MSS Server

Database
Server

Scheduling
Logic

Facility Mgt
Logic

User Mgt
Logic

Initialization
Logic

DB Interface
Logic

Conflict Res
Logic

Payment
Logic

Panel
Initialization

Main Menu
Panel

Scheduling
Panels

Facility
Mgt Panels

Configuration
Panels

User Mgt
Panels

User Processing
(Business Logic)

Data

CSCC40 Information Systems Analysis and Design

Software Architectures -- 15

Many Possible Variations
User Processing Data

CSCC40 Information Systems Analysis and Design

Software Architectures -- 16

Web-Based Software Architectures
 These are client server too, but they are based on WWW

technologies.
 Such architectures are becoming very popular because of static

HTML-based applications, but also dynamic ones, such as those
that involve Ecommerce.
HTTP -- HyperText Transfer Protocol, used to transfer hypertext

documents over the internet;
HTML -- HyperText Markup Language, used to define hypertext

documents;
CGI -- Common Gateway Interface is a program (e.g., a unix

shell script, or a perl script)
CGI scripts are programs that reside on a web server and are

executed with a click to retrieve data, generate graphics etc.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 17

Static HTML-Based Architecture

 This architecture basically retrieves and displays HTML
documents that reside on the web server site.

Web
Browser

Web
Server HTML

Documents

HTML
Documents

HTTP

File access

CSCC40 Information Systems Analysis and Design

Software Architectures -- 18

More Detailed Static Architecture

 Arrows indicate data and/or control flow.

HTTP
Server

HTML
Documents

Stream
Manager

Path
Resolver

Presentation
Manager

UI
Manager

Access
Manager

Stream
Manager

Protocol
Manager

Cache
Manager

Web client

Web server

CSCC40 Information Systems Analysis and Design

Software Architectures -- 19

Dynamic HTML-Based Architecture

 The CGI gateway serves as demon which dispatches a request, dealt
with by an application or a database server.

HTTP
Server

HTML
Documents

Stream
Manager

Path
Resolver

CGI

Applications

Files +
Databases

CSCC40 Information Systems Analysis and Design

Software Architectures -- 20

Document Interchange Example
 ANALYST, the General Motors Dealer Review Advisor.
 Assists credit analysts in 230 GM Acceptance Corporation

branch offices analyzing dealership operations in order to
decide on credit applications.

 Offers many benefits, including faster reviews, reduced training
of personnel and consistency in decision-making.

 Uses an expert system, integrated into a vast, conventional data
processing architecture.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 21

ANALYST Local Architecture

REMOTE HOST
INTERFACE

DEALERSHIP DATA
MANAGEMENT

EXPERT SYSTEM
REVIEW ADVISOR

DEALERSHIP
DATABASE

CLERICAL
DATA

ENTRY

CLERK

CREDIT
ANALYST

CSCC40 Information Systems Analysis and Design

Software Architectures -- 22

ANALYST Global Architecture

GMAC
WHOLESALE

SYSTEM

GMAC
RETAIL

SYSTEM

DEALER
TIME SALES

SYSTEM

GMAC
400 CARD
SYSTEM

ANALYST
SUPPORT
SYSTEM

GM DEALERSHIP
FINANCIAL

SYSTEM

 SNA
NETWORK

BRANCH BRANCH BRANCH

nightly feeds

online
queries,
updates

online
queries,
updates

online
queries,
updates online

queries,
updates

nightly
uploads,

downloads

CSCC40 Information Systems Analysis and Design

Software Architectures -- 23

Four-Layer Architectures
for Information Systems

This is a variation of the 3-tier architecture
we discussed earlier

CSCC40 Information Systems Analysis and Design

Software Architectures -- 24

Vertical Partitioning
 Now the idea is to partition each layer into subsystems.
 Partitioning identifies weakly coupled subsystems within a

layer.
 Each partition provides a self-contained service for the rest of

the system.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 25

Architecture for the A-7E Aircraft
Function Drivers

Shared Services

S/W
Utilities

Data
Banker Physical

Models Filter
Behaviours

Device Interfaces

Application Data Types

Extended Computer

CSCC40 Information Systems Analysis and Design

Software Architectures -- 26

Notes on the A-7E Architecture
 This is a “uses” architecture, I.e., shows which component uses
resources in another component.
 Modules in the different components of the architecture:

 Extended computer: virtual memory module, parallelism
module, timer module;
 Device interfaces: air data module, audible signal device
module, Doppler radar set module,…;
 Function driving module: flight information display module,,
panel module, ground test module,…;
 Application data types: numeric, state transition data types;
 Data banker module: singular values module, complex event
module,…;
 Physical model: aircraft motion module, earth characteristics
module, human factors module;
 Software utilities: powerup module.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 27

Styles of Communication:
Client-Server vs Peer-to-Peer

CSCC40 Information Systems Analysis and Design

Software Architectures -- 28

The Model View Controller (MVC)
Architecture

 First used with Smalltalk but has since become widely used as
an architecture for object-oriented software systems.

 Capable of supporting user requirements that are presented
through differing interface styles.

 Aids modifiability and portability. In particular, allows one to
change the functionality related to one class (e.g., Courses),
without changing others (e.g., DegreeProgrammes.) Also, makes
it easier to port a system to different I/O devices.

 This architecture is best suited for software systems where user
interfaces play an important role.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 29

The MVC Architecture
Consists of subsystems which are classified into one of the following

three types:
 Model -- provides the main functionality of the application and is

aware of each of its dependent view and controller components.
 View -- each view corresponds to a particular style and format of

presentation (output) of information to the user.
 It retrieves data from the model and updates its presentations

when data has been changed in one of the other views.
 It creates its own associated controller;

 Controller -- accepts user input in the form of events that trigger
the execution of operations within the model
 These may cause changes to the model, and in turn may

trigger updates in all views ensuring that they are all up to date.
 Dependency Mechanism: enables the model to inform each view

that the model data has changed and as a result the view must
update itself

CSCC40 Information Systems Analysis and Design

Software Architectures -- 30

Model View Controller (MVC)

CSCC40 Information Systems Analysis and Design

Software Architectures -- 31

MVC as a Layered Architecture
 You can think of MVC architectures as a refinement of the

presentation and application tiers of a 3-tier architecture.

View1 Cont1
Model1

View2 Cont2
Model2

ViewN ContN
ModelN

…
Database

CSCC40 Information Systems Analysis and Design

Software Architectures -- 32

Responsibilities of MVC
Components

Type (stereotype)
of class

CSCC40 Information Systems Analysis and Design

Software Architectures -- 33

Notes on MVC
 The operation update() in AdvertView and AdvertController

trigger these components to request data from
CampaignModel. CampaignModel has no knowledge of how
this information will be used.

 The attach() and detach() operations allow views and
controllers to be added to/removed from setOfObservers.

 The notify() operation of a model causes all associated
views and controllers to be updated.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 34

MVC Component Interaction

CSCC40 Information Systems Analysis and Design

Software Architectures -- 35

Broker Architectures
for Distributed Systems

 A broker increases the flexibility of the system by decoupling the
client and server components:
 Each client sends its requests to the broker rather than

communicating directly with the server component;
 The broker then forwards the service request to an

appropriate server.
 The client need not know where the server is locate (it may be in

local or remote computer.)
 Only the broker needs to know the location of the servers that it

handles.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 36

Simplified Broker Architecture

CSCC40 Information Systems Analysis and Design

Software Architectures -- 37

Broker
Architecture

for Local
Server

CSCC40 Information Systems Analysis and Design

Software Architectures -- 38

Proxies
 Proxies are a design pattern used to design object-oriented

software.
 Some classes (e.g., model classes like Advert and Customer)

are “heavy-weight” in the sense that to create their instances
we need to access a database.

 We would like to avoid creating instances of heavy-weight
classes for as long as possible.

 A proxy class is associated to a heavy-weight class and has
the same interface (same set of allowable operations.)

 Proxy objects are created as needed and act like placeholders.
When someone tries to operate on one, the corresponding
heavy-weight object is created.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 39

Threading and Concurrency
 Each independent flow of control can be modelled as an active

object that represents a process or thread that can initiate control
activity.
 A process is a heavyweight flow (known to the operating

systems itself) that can execute concurrently with other
processes

 A thread is a lightweight flow that can execute concurrently
with other threads within the same process.

 Dynamic model of the design identifies concurrent parts of the
system:
 Sequence diagrams imply sequential threads of execution -

sequences of messages that invoke each other procedurally;
 State and activity diagrams can model concurrent execution

where different event sequences can lead to concurrent
execution.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 40

Summary
 Architectural software design focuses on the main

components of a software system and how they inter-relate.
 Architectural software design is an important phase of the

software development process, and can -- literally -- make or
break a development project.

CSCC40 Information Systems Analysis and Design

Software Architectures -- 41

Additional Readings
 [Booch99] Booch, G. Rumbaugh, J., Jacobson, I., The Unified

Modeling Language User Guide. Chapter 22. Addison-Wesley.
 [Rumbaugh91] Rumbaugh, J et al. Object-Oriented Modeling

and Design. Chapter 9, Prentice-Hall.

	Slide Number 1
	Slide Number 2
	Subsystems
	Slide Number 4
	Slide Number 5
	The Software �Bookshelf
	Slide Number 7
	Packages
	A Package Diagram
	Decomposition into Subsystems
	Closed vs Open �Layered Architecture
	Closed vs Open �Layered Architectures
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Four-Layer Architectures �for Information Systems
	Vertical Partitioning
	Slide Number 25
	Slide Number 26
	Styles of Communication:�Client-Server vs Peer-to-Peer
	The Model View Controller (MVC) Architecture
	The MVC Architecture
	Model View Controller (MVC)
	MVC as a Layered Architecture
	Responsibilities of MVC Components
	Notes on MVC
	MVC Component Interaction
	Broker Architectures �for Distributed Systems
	Simplified Broker Architecture
	Broker Architecture for Local Server
	Proxies
	Threading and Concurrency
	Slide Number 40
	Additional Readings

