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Software Architectures
 A software architecture defines the components of a software system

and how they use each other’s functionality and data.
 For example, the client-server architecture consists of servers, which

support some kind of service, and clients which request and use
server services. With a client-server architecture, an information
system need not be seen as a monolithic program.

 Instead, input/output functions are placed on clients, running on PCs
and workstations; data storage is assigned to a server, implemented
in terms of a DBMS (e.g., DB2, Ingres, Sybase or Oracle) and placed
on a mainframe or mini. Consistency checking is located with the
server, applications are located with clients.

 Thick servers offer a lot of functionality, thin ones little.
 Thick clients have their own services, thin ones get almost

everything from servers.
 In these lecture notes, we emphasize object-oriented architectures.
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Subsystems
 A subsystem is a component of a system or of another

subsystem.
 Modules or components are atomic subsystems (which are not

further decomposed into subsystems.)
 It’s useful to subdivide a software system into subsystems

 For better-managed software development;
 For improved reuse potential (through components);
 For improved portability (platform-specific code isolated to

particular subsystems.)
 For easier maintenance.

 Each subsystem has a well-defined interface with respect to the
rest of the system.
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Components and Connectors
 The architecture shown in the previous slide is one example

of a software architecture where the nodes represent
subsystems or modules and the connectors between them
describe “componentOf” relationships.

 There are many others kinds of connectors that can be used,
such as:
 Uses -- one component uses data defined in another

component;
 Calls -- one component calls methods defined in another

component;
 I/O -- the output of one component is fed as input to

another;
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The Software 
Bookshelf
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Architectural Styles
 It is useful to classify software architectures into classes of

architectural styles.
 For example, the client-server architecture discussed earlier is

an architectural style.
 The styles we’ll discuss below are as follows:

 Pipes and filters;
 Object-Orientation;
 Event-Based
 Layered;
 Repository-Based;
 Client-Server;
 Three-Tier;
 …more...
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Packages
 A package in UML is a grouping of elements; these elements

 May be packages (representing subsystems or modules);
 May be classes;
 Each element of a software architecture (subsystem, module

or class) is owned by a single package;
 Packages may reference other packages.

 There are many criteria to use in decomposing a software system
into packages:
 Ownership -- who is responsible from which diagrams;
 Application -- each application has its own obvious partitions;

e.g., a university dept model may be partitioned into staff,
courses, degree programmes,…

 Clusters of classes used together, e.g., course, course
description, instructor, student,…
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A Package Diagram

 A dependency means that
if you change a class in one
package (Meetings), you
may have to change
something in the other
(Constraints).

 The concept is similar to
compilation dependencies.

 It’s desirable to minimize
dependency cycles, if at all
possible.

Persons

Meetings

Constraints

dependency
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Decomposition into Subsystems
 A software system may be decomposed into horizontal layers,

and/or vertical partitions.
 For a horizontal layer decomposition, each layer corresponds to

one or more subsystems, and each layer uses services provided
by the layers below it.

 Layered architectures have two forms:
 closed architecture - each layer only uses services of the

layer immediatebelow;
 open architecture - a layer can use services from any lower

layer.
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Closed vs Open 
Layered Architecture



CSCC40 Information Systems Analysis and Design 

Software Architectures  -- 12

 Closed layered architectures
 Minimize dependencies between layers and reduce the impact 

of a change to the interface of any one layer.
 Open layered architectures

 Lead to more compact code, since the services of all lower 
layers can be accessed directly without the need for extra 
program code to pass messages through each intervening 
layer;

 Break the encapsulation of layers, increase dependencies 
between layers  and increase the complexity of changes to the 
system.

Closed vs Open 
Layered Architectures
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Client Server Architectures
 A client server architecture consists of service consumers

(clients) and service providers (servers). Clients and servers
may or may not be running on dedicated machines.

 Information exchange between clients and servers is done
through messages.

 Service requests and responses are accomplished through one
of the following protocols:
Remote Procedure Call (RPC) -- client invokes a remotely

located procedure, which is executed and the results sent to
the client; RPC is widely supported;

Remote Data Access (RDA) -- here the invoked procedure is
a database query (say, in SQL) and the response is an often
large set of data; supported by DBMS vendors;

Queued Message Processing -- here requests are queued
and processed whenever possible.
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Three-Tier Client Server Architectures
 Used widely in industry

 E.g., architecture for a meeting scheduling system (MSS)
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Many Possible Variations
User Processing Data
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Web-Based Software Architectures
 These are client server too, but they are based on WWW

technologies.
 Such architectures are becoming very popular because of static

HTML-based applications, but also dynamic ones, such as those
that involve Ecommerce.
HTTP -- HyperText Transfer Protocol, used to transfer hypertext

documents over the internet;
HTML -- HyperText Markup Language, used to define hypertext

documents;
CGI -- Common Gateway Interface is a program (e.g., a unix

shell script, or a perl script)
CGI scripts are programs that reside on a web server and are

executed with a click to retrieve data, generate graphics etc.
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Static HTML-Based Architecture

 This architecture basically retrieves and displays HTML
documents that reside on the web server site.
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More Detailed Static Architecture

 Arrows indicate data and/or control flow.
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Dynamic HTML-Based Architecture

 The CGI gateway serves as demon which dispatches a request, dealt
with by an application or a database server.
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Document Interchange Example
 ANALYST, the General Motors Dealer Review Advisor.
 Assists credit analysts in 230 GM Acceptance Corporation

branch offices analyzing dealership operations in order to
decide on credit applications.

 Offers many benefits, including faster reviews, reduced training
of personnel and consistency in decision-making.

 Uses an expert system, integrated into a vast, conventional data
processing architecture.
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ANALYST Local Architecture 
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ANALYST Global Architecture
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Four-Layer Architectures 
for Information Systems

This is a variation of the 3-tier architecture 
we discussed earlier
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Vertical Partitioning
 Now the idea is to partition each layer into subsystems.
 Partitioning identifies weakly coupled subsystems within a

layer.
 Each partition provides a self-contained service for the rest of

the system.
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Architecture for the A-7E Aircraft
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Notes on the A-7E Architecture
 This is a “uses” architecture, I.e., shows which component uses
resources in another component.
 Modules in the different components of the architecture:

 Extended computer: virtual memory module, parallelism
module, timer module;
 Device interfaces: air data module, audible signal device
module, Doppler radar set module,…;
 Function driving module: flight information display module,,
panel module, ground test module,…;
 Application data types: numeric, state transition data types;
 Data banker module: singular values module, complex event
module,…;
 Physical model: aircraft motion module, earth characteristics
module, human factors module;
 Software utilities: powerup module.
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Styles of Communication:
Client-Server vs Peer-to-Peer 
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The Model View Controller (MVC) 
Architecture

 First used with Smalltalk but has since become widely used as
an architecture for object-oriented software systems.

 Capable of supporting user requirements that are presented
through differing interface styles.

 Aids modifiability and portability. In particular, allows one to
change the functionality related to one class (e.g., Courses),
without changing others (e.g., DegreeProgrammes.) Also, makes
it easier to port a system to different I/O devices.

 This architecture is best suited for software systems where user
interfaces play an important role.
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The MVC Architecture
Consists of subsystems which are classified into one of the following

three types:
 Model -- provides the main functionality of the application and is

aware of each of its dependent view and controller components.
 View -- each view corresponds to a particular style and format of

presentation (output) of information to the user.
 It retrieves data from the model and updates its presentations

when data has been changed in one of the other views.
 It creates its own associated controller;

 Controller -- accepts user input in the form of events that trigger
the execution of operations within the model
 These may cause changes to the model, and in turn may

trigger updates in all views ensuring that they are all up to date.
 Dependency Mechanism: enables the model to inform each view

that the model data has changed and as a result the view must
update itself
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Model  View Controller (MVC)
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MVC as a Layered Architecture
 You can think of MVC architectures as a refinement of the

presentation and application tiers of a 3-tier architecture.

View1 Cont1
Model1      

View2 Cont2
Model2      

ViewN ContN
ModelN      

…
Database  
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Responsibilities of MVC 
Components

Type (stereotype)
of class
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Notes on MVC
 The operation update() in AdvertView and AdvertController

trigger these components to request data from
CampaignModel. CampaignModel has no knowledge of how
this information will be used.

 The attach() and detach() operations allow views and
controllers to be added to/removed from setOfObservers.

 The notify() operation of a model causes all associated
views and controllers to be updated.
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MVC Component Interaction
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Broker Architectures 
for Distributed Systems

 A broker increases the flexibility of the system by decoupling the 
client and server components:
 Each client sends its requests to the broker rather than 

communicating directly with the server component;
 The broker then forwards the service request to an 

appropriate server.
 The client need not know where the server is locate (it may be in 

local or remote computer.)
 Only the broker needs to know the location  of the servers that it 

handles.
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Simplified Broker Architecture
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Broker 
Architecture 

for  Local 
Server
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Proxies
 Proxies are a design pattern used to design object-oriented

software.
 Some classes (e.g., model classes like Advert and Customer)

are “heavy-weight” in the sense that to create their instances
we need to access a database.

 We would like to avoid creating instances of heavy-weight
classes for as long as possible.

 A proxy class is associated to a heavy-weight class and has
the same interface (same set of allowable operations.)

 Proxy objects are created as needed and act like placeholders.
When someone tries to operate on one, the corresponding
heavy-weight object is created.



CSCC40 Information Systems Analysis and Design 

Software Architectures  -- 39

Threading and Concurrency
 Each independent flow of control can be modelled as an active

object that represents a process or thread that can initiate control
activity.
 A process is a heavyweight flow (known to the operating

systems itself) that can execute concurrently with other
processes

 A thread is a lightweight flow that can execute concurrently
with other threads within the same process.

 Dynamic model of the design identifies concurrent parts of the
system:
 Sequence diagrams imply sequential threads of execution -

sequences of messages that invoke each other procedurally;
 State and activity diagrams can model concurrent execution

where different event sequences can lead to concurrent
execution.
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Summary
 Architectural software design focuses on the main

components of a software system and how they inter-relate.
 Architectural software design is an important phase of the

software development process, and can -- literally -- make or
break a development project.
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Additional Readings
 [Booch99] Booch, G. Rumbaugh, J., Jacobson, I., The Unified

Modeling Language User Guide. Chapter 22. Addison-Wesley.
 [Rumbaugh91] Rumbaugh, J et al. Object-Oriented Modeling

and Design. Chapter 9, Prentice-Hall.
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