
Information Systems Analysis and Design cscc40

Design Patterns 1

XIV. Design Patterns

Acknowledgment: these slides are based on Prof. John Mylopoulos slides
which are used to teach a similar course in the University of Toronto

– St. George campus. Used with Permission.

Information Systems Analysis and Design cscc40

Design Patterns 2

Command pattern Applicability
“Encapsulate a request as an object,

thereby letting you
– parameterize clients with different requests,
– queue or log requests, and
– support undoable operations.”

• Uses:
– Undo queues, can add now since each command is

sent through a command object and we can create a
history of commands within this object

– Database transaction buffering
– Structure the application around commands

Information Systems Analysis and Design cscc40

Design Patterns 3

Common UI commands

• it is common in a GUI to have several ways
to activate the same behavior

– example: toolbar "Cut" button and "Edit / Cut" menu
– this is good ; it makes the program flexible for the user
– we'd like to make sure the code implementing these

common commands is not duplicated

Information Systems Analysis and Design cscc40

Design Patterns 4

Command pattern facilities
understanding of applications code

Information Systems Analysis and Design cscc40

Design Patterns 5

Observer pattern
• “Define a one-to-many dependency

between objects so that when one object
changes state, all its dependents are
notified and updated automatically.”

• Also called “Publish and Subscribe”

• Uses:
– Maintaining consistency across redundant state
– Optimizing batch changes to maintain consistency

Information Systems Analysis and Design cscc40

Design Patterns 6

Observer Pattern

Subject

attach (Observer)

detach (Observer)

Notify ()

Observer

Update()

Concrete Observer

Update()

observerState

Concrete Subject

GetState()

SetState()

subjectState

observers

subject

For all x in observers{
x  Update(); }

observerState=
subject  getState();

Information Systems Analysis and Design cscc40

Design Patterns 7

Typical command line program
• Non-interactive

• Linear execution
program:
main()
{

code;
code;
code;
code;
code;
code;
code;
code;
code;
code;
code;
code;

}

Information Systems Analysis and Design cscc40

Design Patterns 8

Interactive command line program
• User input commands

• Non-linear execution
• Unpredictable order
• Much idle time

program:
main()
{

decl data storage;
initialization code;

loop
{

get command;
switch(command)
{

command1:
code;

command2:
code;

…
}

}
}

Information Systems Analysis and Design cscc40

Design Patterns 9

Interactive Graphical User Interface

Information Systems Analysis and Design cscc40

Design Patterns 10

Interactive Graphical User Interface
• What’s make a GUI GUI?

– Windows
– Selection controls: drop-downs, radio-buttons, check

boxes, menus,..
– Activation controls: buttons, icons
– Input controls: text fields, text areas
– Structure information visually: lists, grids, trees,

labels

Butto
n

Label Text
field

Check
Box

Radio
Butto
n

Combo Box

Information Systems Analysis and Design cscc40

Design Patterns 11

Java GUI program
Java program:
Class{
main()
{

decl data storage;
initialization code;

create GUI objects;
register listeners;

}

listener1()
{ do stuff;
}
listener2()
{ do stuff;
}
…

• Event loop automatic
in separate program

Information Systems Analysis and Design cscc40

Design Patterns 12

Input Events

Information Systems Analysis and Design cscc40

Design Patterns 13

Observer pattern (continued)

9DesignPatterns2.pp

Observers Subject

Change name to F

Information Systems Analysis and Design cscc40

Design Patterns 14

Observer pattern (cont’d)

Observer
update()

Subject
attach(observer)
detach(observer)

notify()

ConcreteSubject
getState()

setState(newState)
subjectState

ConcreteObserver
update()

observerState

observers

subject

*

• The Subject represents the actual state, the
Observers represent different views of the state.

• Observer can be implemented as a Java interface.
• Subject is a super class (needs to store the

observers vector) not an interface.

Information Systems Analysis and Design cscc40

Design Patterns 15

Sequence diagram for scenario: Change filename to “foo”

getState()

update()

update()

aListViewanInfoViewaFile

setState(“foo”)

notify()

Attach() Attach()

“foo”

Subject goes through all its
observers and calls update() on

them, asking for the new
state is decoupled from

the notification

Information Systems Analysis and Design cscc40

Design Patterns 16

Observer Pattern: Consequences

• Abstract coupling between subject and observer.
Subject has no knowledge of concrete observer
classes. (What design principle is used?)

• Support for broadcast communication. A subject need
not specify the receivers; all interested objects receive
the notification.

• Unexpected updates: Observers need not be concerned
about when then updates are to occur. They are not
concerned about each other’s presence. In some cases
this may lead to unwanted updates.

	XIV. Design Patterns
	Command pattern Applicability
	Common UI commands
	Command pattern facilities understanding of applications code
	Observer pattern
	Observer Pattern
	Typical command line program
	Interactive command line program
	Interactive Graphical User Interface
	Interactive Graphical User Interface
	Java GUI program
	Input Events
	Observer pattern (continued)
	Observer pattern (cont’d)
	Sequence diagram for scenario: Change filename to “foo”
	Observer Pattern: Consequences

