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XIV. Design Patterns 

Acknowledgment: these slides are based on Prof. John Mylopoulos slides
which are used to teach a similar course in the University of Toronto 

– St. George campus. Used with Permission.



Information Systems Analysis and Design                   cscc40

Design  Patterns 2

Command pattern Applicability
“Encapsulate a request as an object,

thereby letting you
– parameterize clients with different requests,
– queue or log requests, and 
– support undoable operations.” 

• Uses:
– Undo queues, can add now since each command is 

sent through a command object and we can create a 
history of commands within this object

– Database transaction buffering
– Structure the application around commands
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Common UI commands

• it is common in a GUI to have several ways
to activate the same behavior

– example: toolbar "Cut" button and "Edit / Cut" menu
– this is good ; it makes the program flexible for the user
– we'd like to make sure the code implementing these 

common commands is not duplicated
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Command pattern facilities 
understanding of applications code
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Observer pattern
• “Define a one-to-many dependency

between objects so that when one object
changes state, all its dependents are
notified and updated automatically.”

• Also called “Publish and Subscribe”

• Uses:
– Maintaining consistency across redundant state
– Optimizing batch changes to maintain consistency
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Observer Pattern 

Subject

attach (Observer)

detach (Observer)

Notify ()

Observer

Update()

Concrete Observer

Update()

observerState

Concrete Subject

GetState()

SetState()

subjectState

observers

subject

For all x in observers{
x   Update(); }

observerState=
subject   getState();
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Typical command line program
• Non-interactive

• Linear execution
program:
main()
{

code;
code;
code;
code;
code;
code;
code;
code;
code;
code;
code;
code;

}
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Interactive command line program
• User input commands

• Non-linear execution
• Unpredictable order
• Much idle time

program:
main()
{

decl data storage;
initialization code;

loop
{

get command;
switch(command)
{

command1:
code;

command2:
code;

…
}

}
}
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Interactive Graphical User Interface
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Interactive Graphical User Interface
• What’s make a GUI GUI?

– Windows
– Selection controls: drop-downs, radio-buttons, check 

boxes, menus,..
– Activation controls: buttons, icons
– Input controls: text fields, text areas
– Structure information visually:  lists, grids, trees, 

labels

Butto
n

Label Text 
field

Check 
Box

Radio 
Butto
n

Combo Box
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Java GUI program
Java program:
Class{
main()
{

decl data storage;
initialization code;

create GUI objects;
register listeners;

}

listener1()
{ do stuff;
}
listener2()
{ do stuff;
}
…

• Event loop automatic
in separate program
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Input Events 
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Observer pattern (continued)

9DesignPatterns2.pp

Observers Subject

Change name to F
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Observer pattern (cont’d)

Observer
update()

Subject
attach(observer)
detach(observer)

notify()

ConcreteSubject
getState()

setState(newState)
subjectState

ConcreteObserver
update()

observerState

observers

subject

*

• The Subject represents the actual state, the
Observers represent different views of the state.

• Observer can be implemented as a Java interface.
• Subject is a super class (needs to store the

observers vector) not an interface.
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Sequence diagram for scenario: Change filename to “foo”

getState()

update()

update()

aListViewanInfoViewaFile

setState(“foo”)

notify()

Attach() Attach()

“foo”

Subject goes through all its 
observers and calls update() on 

them, asking for the new 
state is decoupled from 

the notification
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Observer Pattern: Consequences

• Abstract coupling between subject and observer.
Subject has no knowledge of concrete observer
classes. (What design principle is used?)

• Support for broadcast communication. A subject need 
not specify the receivers; all interested objects receive 
the notification.

• Unexpected updates: Observers need not be concerned 
about when then updates are to occur. They are not 
concerned about each other’s presence. In some cases 
this may lead to unwanted updates.
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