
Information Systems Analysis and Design cscc40

Design Patterns 1

Design Patterns (3)

Acknowledgment: these slides are based on Prof. John Mylopoulos slides
which are used to teach a similar course in the University of Toronto

– St. George campus. Used with Permission.

Information Systems Analysis and Design cscc40

Design Patterns 2

Application Subsystems

Information Systems Analysis and Design cscc40

Design Patterns 3

Application Subsystems - example

Commands Data

GUI HardwareDrivers

Information Systems Analysis and Design cscc40

Design Patterns 4

Application Subsystems - example

Commands Data

GUI HardwareDrivers

communication

algorithms

Information Systems Analysis and Design cscc40

Design Patterns 5Software Desi

Before using a facade

Subsystem A Classes

Subsystem B Classes

Information Systems Analysis and Design cscc40

Design Patterns 6Software Desi

Using Facade Pattern

Subsystem A Classes

Subsystem B Classes

Facade

Information Systems Analysis and Design cscc40

Design Patterns 7

Facade Pattern: Why and What?

• Need to provide a simple interface to many, often
small, classes. But not necessarily to ALL classes
of the subsystem.

• Façade provides a simple default view good enough for
most clients.

• Facade decouples a subsystem from its clients.

• Subsystems often get complex as they evolve.

• A façade can be a single entry point to each subsystem
level. This allows layering.

Information Systems Analysis and Design cscc40

Design Patterns 8

Facade Pattern: Participants and
Communication

• Clients communicate with subsystem classes by
sending requests to façade.

• Façade forwards requests to the appropriate subsystem
classes.

• Clients do not have direct access to subsystem classes.

• Participants: Façade and subsystem classes

Information Systems Analysis and Design cscc40

Design Patterns 9

Facade Pattern: Benefits

• Promotes weak coupling between subsystem and its
clients.

• Helps in layering the system. Helps eliminate circular
dependencies.

• Shields clients from subsystem classes; reduces
the number of objects that clients deal with.

Information Systems Analysis and Design cscc40

Design Patterns 10

Model View Controller

• Context (where does this problem occur?)
– MVC is an architectural pattern that is used when

developing interactive application!

• Problem (definition of the reoccurring difficulty)
– User interfaces change often, especially on the

internet where look-and-feel is a competitive issue.
Also, the same information is presented in different
ways. The core business logic and data is stable.

Information Systems Analysis and Design cscc40

Design Patterns 11

MVC continued
• Solution (how do you solve the

problem?)
– Use the software engineering principle of “separation of

concerns” to divide the application into three areas:

• Model encapsulates the core data and functionality

• View encapsulates the presentation of the data there
can be many views of the common data

• Controller process user input and makes request
from the model for the data to produce a new view.

Information Systems Analysis and Design cscc40

Design Patterns 12

Model View Controller

Model View

Controller

Information Systems Analysis and Design cscc40

Design Patterns 13

Model View Controller

Information Systems Analysis and Design cscc40

Design Patterns 14

Model View Controller

Information Systems Analysis and Design cscc40

Design Patterns 15

Model / view / controller (MVC)

Controller

Model

View (displays data)

(mediates)

(holds data)

{
Model m;
Controller c(m);
View v(c);

} calls Register()

Main

View

Controller

Model

C
r
e
a
t
e
(
)

C
r
e
a
t
e
(
)

C
r
e
a
t
e
(
)

R
e
g
i
s
t
e
r
(
)

Information Systems Analysis and Design cscc40

Design Patterns 16

MVC uses Observer pattern (cont.)

Subject

Register(Observer)
Unregister(Observer)
NotifyAll()

Observer

virtual OnUpdate()

1 *

for all o in observers {
o.OnUpdate()

}

Controller View

virtual OnUpdate()

Information Systems Analysis and Design cscc40

Design Patterns 17

MVC Benefits
• Clarity of design

– easier to implement and maintain

• Modularity
– changes to one don't affect the others
– can develop in parallel once you have the interfaces

between subsystems

• Multiple views
– games, spreadsheets, powerpoint, Eclipse, UML

reverse engineering, ….

Information Systems Analysis and Design cscc40

Design Patterns 18

Model View Controller + Facade

Model View

Controller

Information Systems Analysis and Design cscc40

Design Patterns 19

Model View Controller + Façade +
Command

Model View

Controller

…
Cmd1 Cmd2 Cmd3

Command

Information Systems Analysis and Design cscc40

Design Patterns 20

Model View Controller + Façade +
Command + Dispatcher

Model View

Controller

…

Command

Cmd1 Cmd2 Cmd3

Dispatcher

Information Systems Analysis and Design cscc40

Design Patterns 21

Model View Controller + Façade +
Command + Dispatcher + Observer

Model View

Controller

…

Command

Cmd1 Cmd2 Cmd3

Dispatcher

Information Systems Analysis and Design cscc40

Design Patterns 22

Program Architecture – 3 tier
Architecture

	Design Patterns (3)
	Application Subsystems
	Application Subsystems - example
	Application Subsystems - example
	Before using a facade
	Using Facade Pattern
	Facade Pattern: Why and What?
	Facade Pattern: Participants and Communication
	Facade Pattern: Benefits
	Model View Controller
	MVC continued
	Model View Controller
	Model View Controller
	Model View Controller
	Model / view / controller (MVC)
	MVC uses Observer pattern (cont.)
	MVC Benefits
	Model View Controller + Facade
	Model View Controller + Façade + Command
	Model View Controller + Façade + Command + Dispatcher
	Model View Controller + Façade + Command + Dispatcher + Observer
	Program Architecture – 3 tier Architecture

