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Design Patterns (3) 

Acknowledgment: these slides are based on Prof. John Mylopoulos slides
which are used to teach a similar course in the University of Toronto 

– St. George campus. Used with Permission.
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Application Subsystems 
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Application Subsystems - example 

Commands Data

GUI HardwareDrivers
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Application Subsystems - example 

Commands Data

GUI HardwareDrivers

communication

algorithms
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Before using a facade

Subsystem A Classes

Subsystem B Classes
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Using Facade Pattern

Subsystem A Classes

Subsystem B Classes

Facade
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Facade Pattern: Why and What?

• Need to provide a simple interface to many, often
small, classes. But not necessarily to ALL classes
of the subsystem.

• Façade provides a simple default view good enough for 
most clients.

• Facade decouples a subsystem from its clients.

• Subsystems often get complex as they evolve.

• A façade can be a single entry point to each subsystem 
level. This allows layering.
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Facade Pattern: Participants and 
Communication

• Clients communicate with subsystem classes by
sending requests to façade.

• Façade forwards requests to the appropriate subsystem 
classes.

• Clients do not have direct access to subsystem classes.

• Participants: Façade and subsystem classes
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Facade Pattern: Benefits

• Promotes weak coupling between subsystem and its
clients.

• Helps in layering the system. Helps eliminate circular 
dependencies.

• Shields clients from subsystem classes; reduces 
the number of objects that clients deal with.



Information Systems Analysis and Design                   cscc40

Design  Patterns 10

Model View Controller

• Context (where does this problem occur?)
– MVC is an architectural pattern that is used when 

developing interactive application!

• Problem (definition of the reoccurring difficulty)
– User interfaces change often, especially on the 

internet where look-and-feel is a competitive issue. 
Also, the same information is presented  in different 
ways. The core business logic and data is stable.
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MVC continued
• Solution (how do you solve the

problem?)
– Use the software engineering principle of “separation of 

concerns” to divide the application into three areas: 

• Model encapsulates the core data and functionality

• View encapsulates the presentation of the data there 
can be many views of the common data

• Controller process user input and makes request 
from the model for the data to produce a new view.



Information Systems Analysis and Design                   cscc40

Design  Patterns 12

Model View Controller

Model View

Controller
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Model View Controller
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Model View Controller
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Model / view / controller (MVC)

Controller

Model

View (displays data)

(mediates)

(holds data)

{
Model m;
Controller c(m);
View v(c);

} calls Register()
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MVC uses Observer pattern (cont.)

Subject

Register(Observer)
Unregister(Observer)
NotifyAll()

Observer

virtual OnUpdate()

1 *

for all o in observers {
o.OnUpdate()

}

Controller View

virtual OnUpdate()
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MVC Benefits
• Clarity of design

– easier to implement and maintain

• Modularity
– changes to one don't affect the others
– can develop in parallel once you have the interfaces 

between subsystems

• Multiple views
– games, spreadsheets, powerpoint, Eclipse, UML 

reverse engineering, ….
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Model View Controller + Facade

Model View

Controller
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Model View Controller + Façade + 
Command

Model View

Controller

…
Cmd1 Cmd2 Cmd3

Command
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Model View Controller + Façade + 
Command + Dispatcher

Model View

Controller

…

Command

Cmd1 Cmd2 Cmd3

Dispatcher
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Model View Controller + Façade + 
Command + Dispatcher + Observer

Model View

Controller

…

Command

Cmd1 Cmd2 Cmd3

Dispatcher
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Program Architecture – 3 tier 
Architecture
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