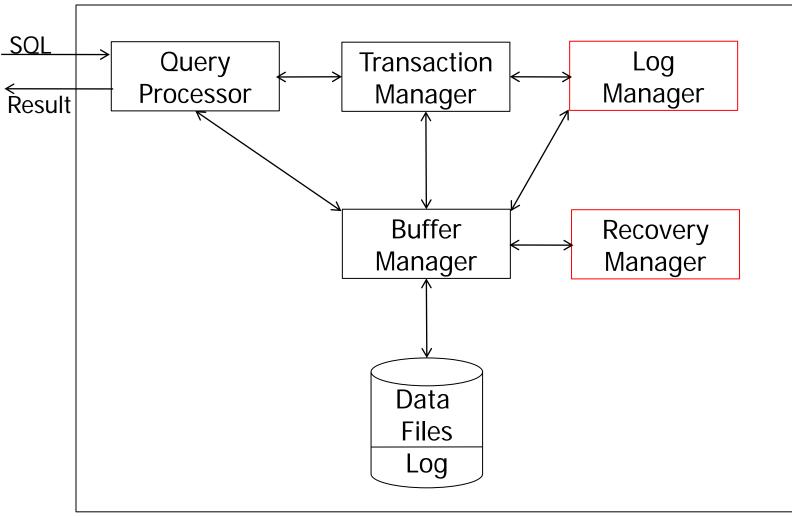


Lecture 10


Wael Aboulsaadat

Acknowledgment: these slides are based on Prof. Garcia-Molina & Prof. Ullman slides accompanying the course's textbook.

University of Toronto Scarborough

DBMS Architecture

Integrity or correctness of data

• Would like data to be "accurate" or "correct" at all times

EMP	Name	Age
	White Green Gray	52 3421 1

Integrity or consistency constraints

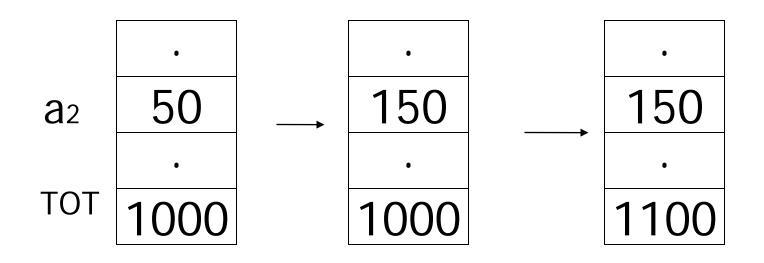
- Predicates data must satisfy
- Examples:
 - x is key of relation R
 - $x \rightarrow y$ holds in R
 - Domain(x) = {Red, Blue, Green}
 - $-\alpha$ is valid index for attribute x of R
 - no employee should make more than twice the average salary

Definition:

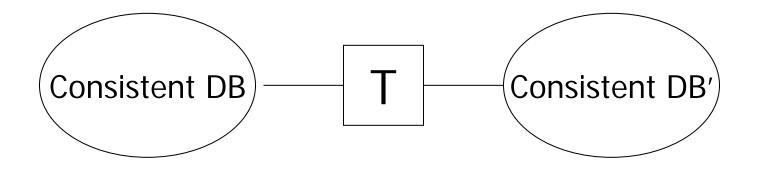
- <u>Consistent state:</u> satisfies all constraints
- <u>Consistent DB:</u> DB in consistent state

<u>Constraints</u> (as we use here) may <u>not</u> capture "full correctness"

- Examples Transaction constraints
- When salary is updated,
 new salary > old salary
- When account record is deleted,
 balance = 0


☞ in any case, continue with constraints...

<u>Observation:</u> DB <u>cannot</u> be consistent always if something goes wrong!


Example: $a_1 + a_2 + \dots = TOT$ (constraint) Deposit \$100 in a_2 : $\begin{cases} a_2 \leftarrow a_2 + 100 \\ TOT \leftarrow TOT + 100 \end{cases}$

Example: $a_1 + a_2 + \dots + a_n = TOT$ (constraint) Deposit \$100 in a_2 : $a_2 \leftarrow a_2 + 100$ TOT $\leftarrow TOT + 100$

<u>Transaction</u>: collection of actions that preserve consistency

Big assumption:

If T starts with consistent state + T executes in isolation ⇒ T leaves consistent state

<u>Correctness</u> (informally)

- If we stop running transactions, DB left consistent
- Each transaction sees a consistent DB

How can constraints be violated?

- Transaction bug
- DBMS bug
- Hardware failure

e.g., disk crash alters balance of account

• Data sharing

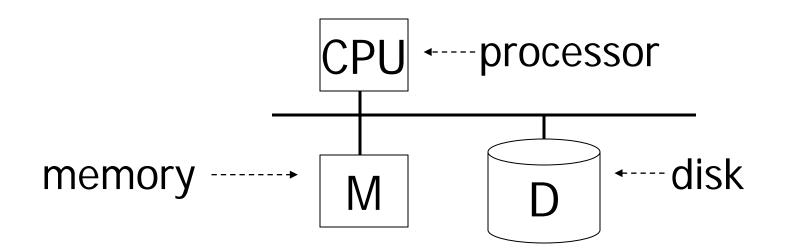
e.g.: T1: give 10% raise to programmers

T2: change programmers \Rightarrow systems analysts

How can we prevent/fix violations?

- Chapter 17: due to failures only
- Chapter 18: due to data sharing <u>only</u>
- Chapter 19: due to failures and sharing

Recovery


• First order of business: <u>Failure Model</u>

Events — Desired Undesired — Expected Unexpected

Our failure model

Desired events: see product manuals....

<u>Undesired expected events:</u> System crash

- memory lost
- cpu halts, resets

Desired events: see product manuals....

Undesired expected events: System crash - memory lost - cpu halts, resets that's it!! —

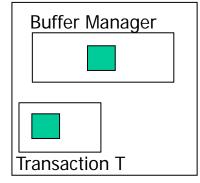
<u>Undesired Unexpected:</u> Everything else!

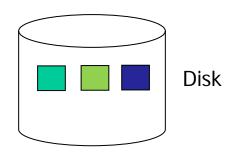
<u>Undesired Unexpected:</u> Everything else!

Examples:

- Disk data is lost
- Memory lost without CPU halt
- CPU implodes wiping out universe....

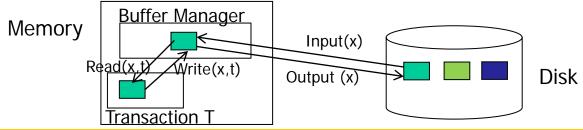
Is this model reasonable?


<u>Approach:</u> Add low level checks + redundancy to increase probability model holds


E.g., Replicate disk storage (stable store) Memory parity CPU checks

Second order of business:

Storage hierarchy



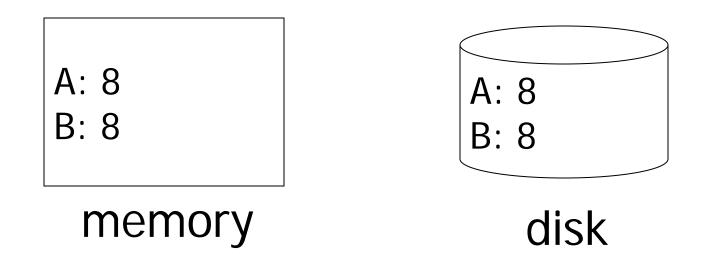
Operations:

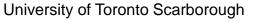
- Input (x): block containing $x \rightarrow$ memory
- Output (x): block containing $x \rightarrow disk$

Operations:

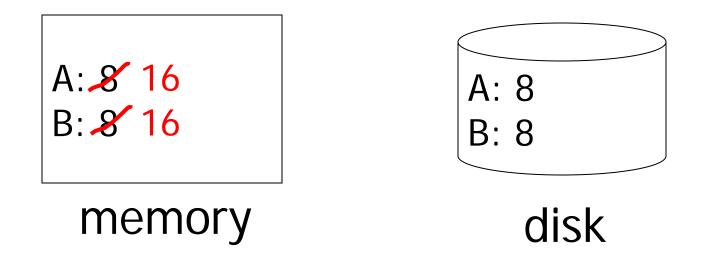
- Input (x): block containing $x \rightarrow$ memory
- Output (x): block containing $x \rightarrow disk$
- Read (x,t): do input(x) if necessary
 t ← value of x in block
- Write (x,t): do input(x) if necessary
 value of x in block ← t

University of Toronto Scarborough

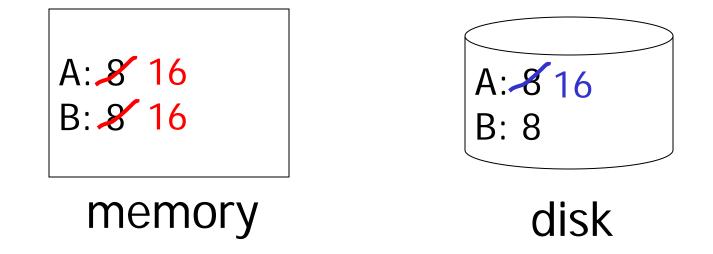



Key problem Unfinished transaction

Example

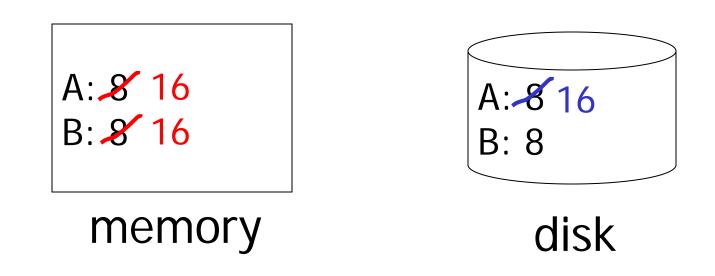

Constraint: A=BT1: $A \leftarrow A \times 2$ $B \leftarrow B \times 2$

T1: Read (A,t); $t \leftarrow t \times 2$ Write (A,t); Read (B,t); $t \leftarrow t \times 2$ Write (B,t); Output (A); Output (B);



T1: Read (A,t); $t \leftarrow t \times 2$ Write (A,t); Read (B,t); $t \leftarrow t \times 2$ Write (B,t); Output (A); Output (B);

University of Toronto Scarborough


T1: Read (A,t); $t \leftarrow t \times 2$ Write (A,t); Read (B,t); $t \leftarrow t \times 2$ Write (B,t); Output (A); Output (B); failure!

Need <u>atomicity:</u> execute all actions of a transaction or none at all

University of Toronto Scarborough

Solution: keep a log to track

Which transaction started?

What did it do? (or what it is going to do?)

Which transaction finished?

Log Commands:

<Start T>

log the start of a transaction

<T1, X, value>

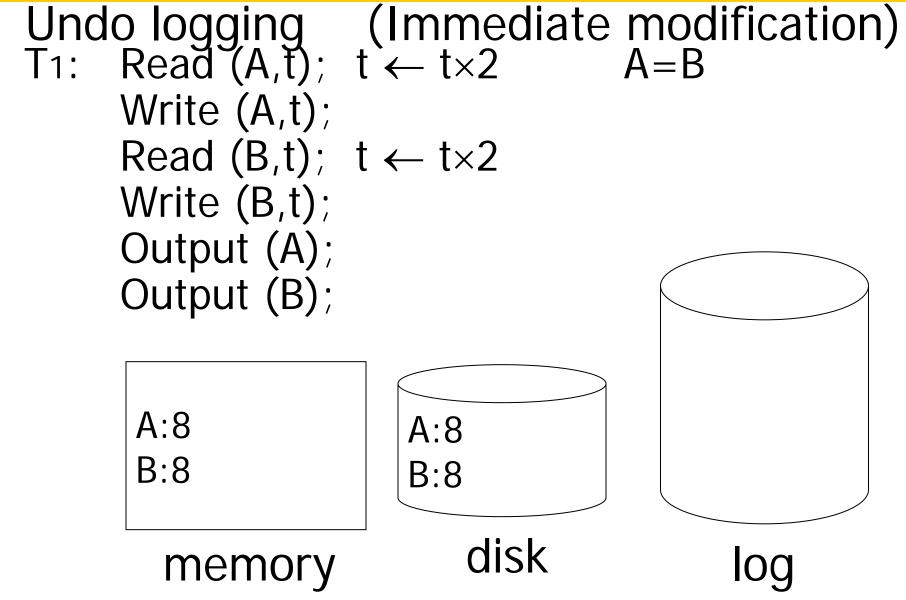
log that T1 (transaction identifier) modified X (database record) affecting value (value)

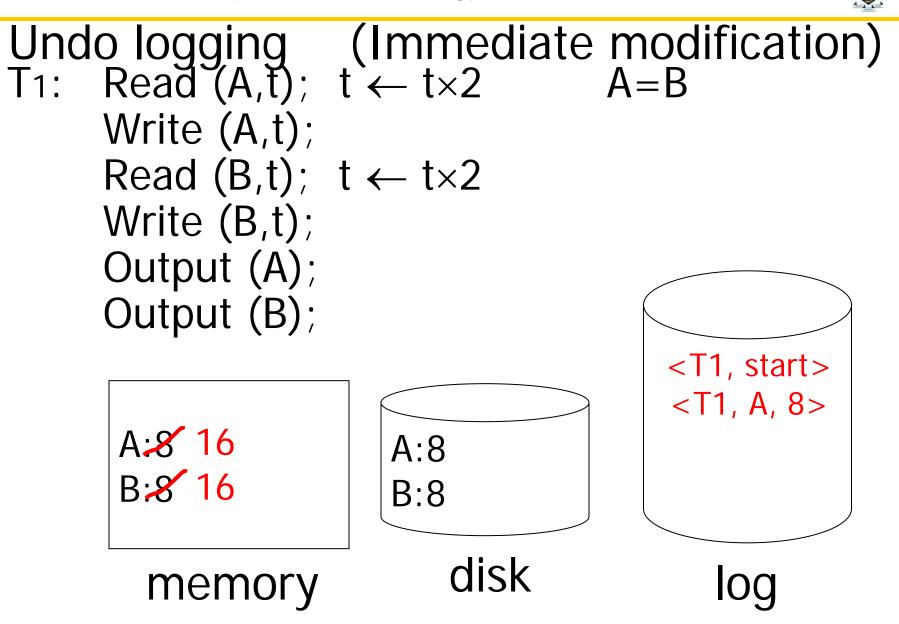
<COMMIT T> log the completion of a transaction

. The

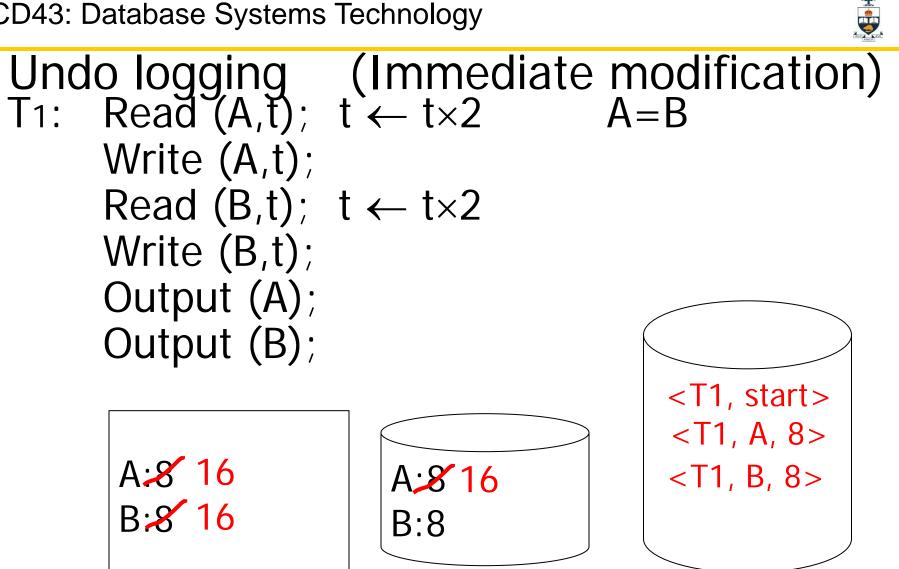
Log Commands:

<Start T>

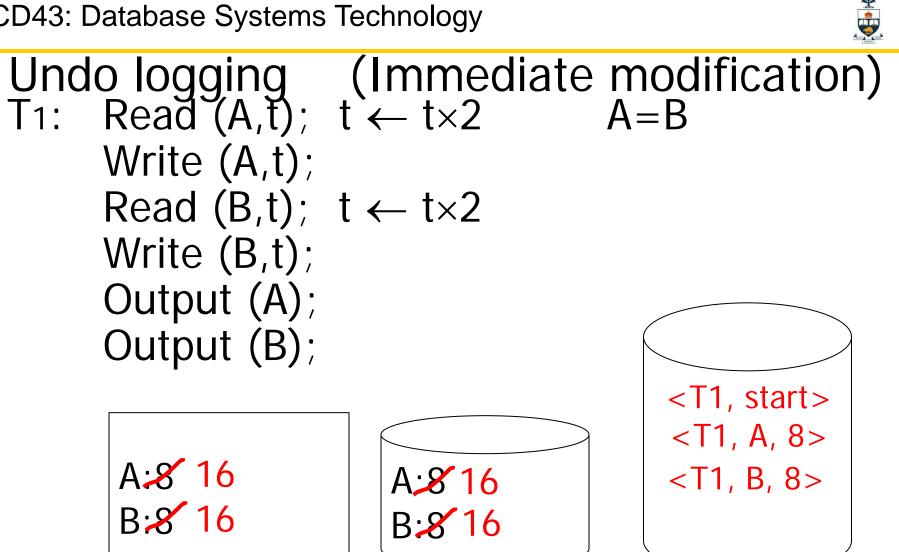

log the start of a transaction


<T1, X, value>

log that T1 (transaction identifier) modified X (database record) affecting value (value)


<COMMIT T> log the completion of a transaction <START T1> <T1,A,5> <START T2> <T2,B,10> <T2,C,15> <T1,D,20> <COMMIT T1> <COMMIT T2> <START T3> <T3,E,25> <T3,F,30>

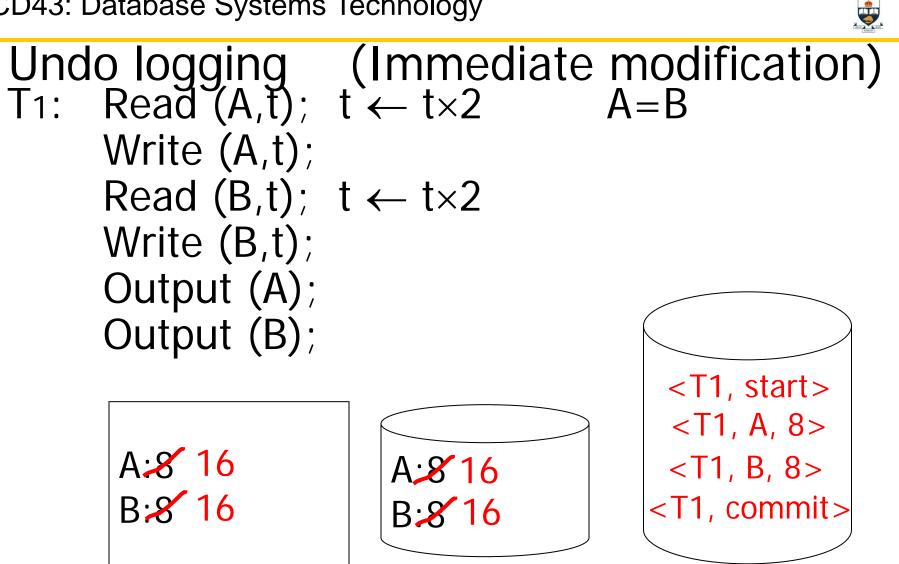
memory



University of Toronto Scarborough

disk

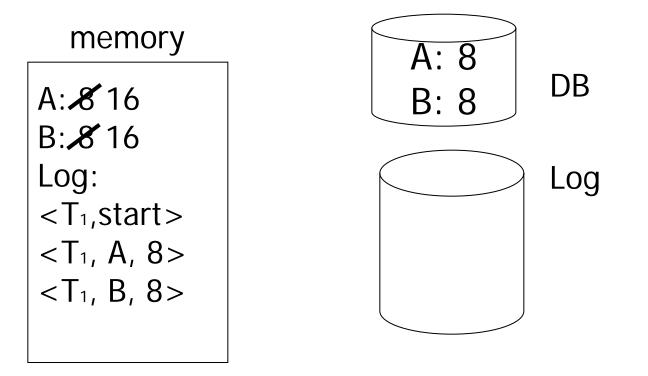
00


memory

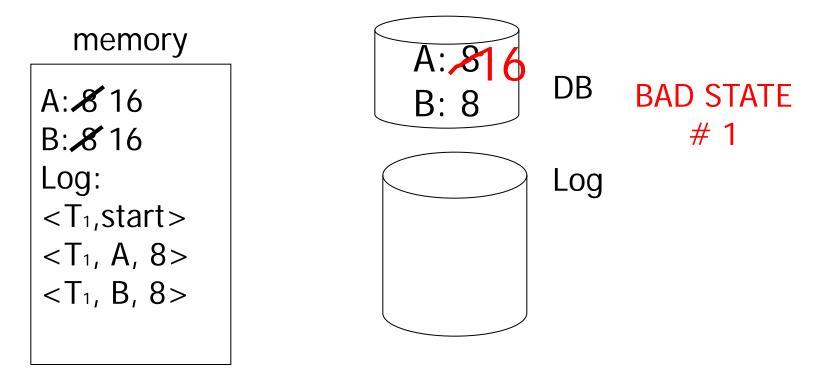
disk

lOQ

memory


disk

I00


One "complication"

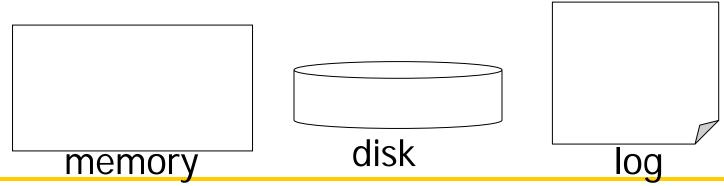
- Log is first written in memory
- Not written to disk on every action

One "complication"

- Log is first written in memory
- Not written to disk on every action

One "complication"

- Log is first written in memory
- Not written to disk on every action


Undo Log Steps:

U1:

If transaction T modifies X, then the log record <T,X,v> must be written to disk <u>before</u> the new value of X is written to disk

U2:

If a transaction commits, then its COMMIT log record must be written to disk only <u>after</u> database record written to disk.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Undo Log Example:

- U1: If transaction T modifies X, then the log record <T,X,v> must be written to disk <u>before</u> the new value of X is written to disk
- U2: If a transaction commits, then its COMMIT log record must be written to disk only <u>after</u> database record written to disk.

Step	Action	t	M-A	M-B	D-A	D-B	Log
1)							<start t=""></start>
2)	READ(A,t)	8	8		8	8	
3)	t := t * 2	16	8		8	8	
4)	WRITE(A,t)	16	16		8	8	<t,a,8></t,a,8>
5)	READ(B,t)	8	8	8	8	8	
6)	t := t * 2	16	16	8	8	8	
7)	WRITE(B,t)	16	16	16	8	8	<t,b,8></t,b,8>
8)	FLUSH LOG						
9)	OUTPUT (A)	16	16	16	16	8	
10)	OUTPUT (B)	16	16	16	16	16	
11)							<commit t=""></commit>
12)	FLUSH LOG						
Memory Read(x,t) Transaction T							

University of Toronto Scarborough

A := A * 2; B := B * 2;

Undo Log: what if a crash happens?

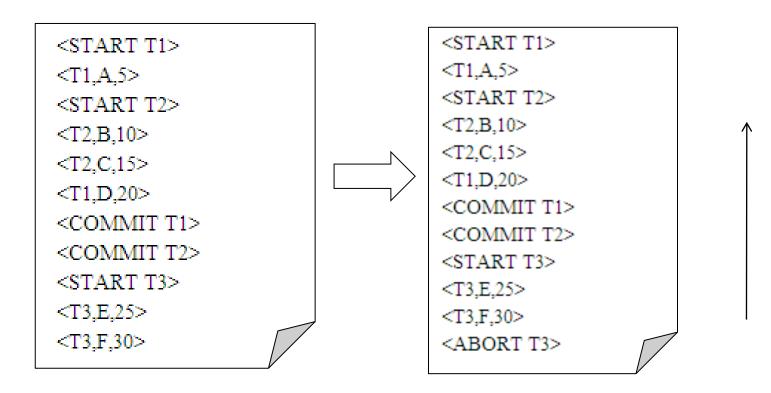
A := A * 2; B := B * 2;

Step	Action	t	M-A	M-B	D-A	D-B	Log
1)		-					<start t=""></start>
2)	READ(A,t)	8	8		8	8	
3)	t := t * 2	16	8		8	8	
4)	WRITE(A,t)	16	16		8	8	<t,a,8></t,a,8>
5)	READ(B,t)	8	8	8	8	8	
6)	t := t * 2	16	16	8	8	8	
7)	WRITE(B,t)	16	16	16	8	8	<t,b,8></t,b,8>
8)	FLUSH LOG						
9)	OUTPUT (A)	16	16	16	16	8	
10)	OUTPUT (B)	16	16	16	16	16	
11)							<commit t=""></commit>
12)	FLUSH LOG						

<u>Recovery rules:</u> Undo logging

 If T is a transaction whose COMMIT record has been seen, then do nothing. (T is committed and must not be undone)

 Otherwise, T is an incomplete transaction, or an aborted transaction. The recovery manager change the value of X in the database to v.


Undo Log: what if a crash happens?

A := A * 2; B := B * 2;

Step	Action	t	M-A	M-B	D-A	D-B	Log
1)		-					<start t=""></start>
2)	READ(A,t)	8	8		8	8	
3)	t := t * 2	16	8		8	8	
4)	WRITE(A,t)	16	16		8	8	<t,a,8></t,a,8>
5)	READ(B,t)	8	8	8	8	8	
6)	t := t * 2	16	16	8	8	8	
7)	WRITE(B,t)	16	16	16	8	8	<t,b,8></t,b,8>
8)	FLUSH LOG						
9)	OUTPUT (A)	16	16	16	16	8	
10)	OUTPUT (B)	16	16	16	16	16	
11)							<commit t=""></commit>
12)	FLUSH LOG						

Undo Log Example

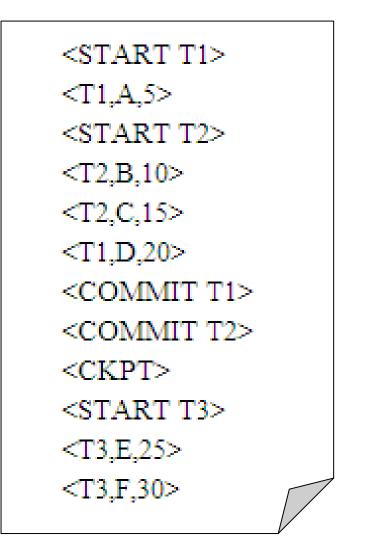
Undo Log: how far to recover?

Real Problem!

Undo log file could contain Mn of records/lines

Need to check all!!

Undo Log: how far to recover?


Solution: insert checkpoints in log file

How it works?

- 1) Stop accepting new transactions
- 2) Wait until all running transactions commit
- 3) Flush the log
- 4) Write a log <CKPT>
- 5) Resume accepting transactions

Undo Log with CheckPoint Example

University of Toronto Scarborough