
University of Toronto ScarboroughUniversity of Toronto Scarborough

CSCD43: Database Systems
Technology

Lecture 4

Wael Aboulsaadat

Acknowledgment: these slides are based on Prof. Garcia-Molina & Prof. Ullman
slides accompanying the course’s textbook.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Steps in Database Design
Conceptual Design

Logical Design

Physical Design

Transactions

PL/SQL

Security Design

Data Population

Query Optimization

University of Toronto Scarborough

CSCD43: Database Systems Technology

Physical Design
A. Specify Storage parameters

B. Specify Indices

University of Toronto ScarboroughUniversity of Toronto Scarborough

Storage and Indexing

University of Toronto Scarborough

CSCD43: Database Systems Technology

Recall Index strategies

University of Toronto Scarborough

CSCD43: Database Systems Technology

Recall Index strategies

University of Toronto Scarborough

CSCD43: Database Systems Technology

 What if index is too large to search sequentially?

Question?

University of Toronto Scarborough

CSCD43: Database Systems Technology

Multi-level Index
 What if the index itself is too big for

memory ?
 Relation size = n = 1,000,000,000
 Block size = 100 tuples per block
 So, number of pages = 10,000,000
 Keeping one entry per page takes too

much space
 Solution?

̶ Build an index on the index itself

University of Toronto Scarborough

CSCD43: Database Systems Technology

B+ Tree Indexes

 Leaf pages contain data entries, and are chained (prev & next)
 Non-leaf pages contain index entries and direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
Leaf

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example B+ Tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

University of Toronto Scarborough

CSCD43: Database Systems Technology

B+ Tree Equality Search

 Search begins at root, and key comparisons
direct it to a leaf.

 Search for 15*…

 Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

University of Toronto Scarborough

CSCD43: Database Systems Technology

B+ Tree Range Search

 Search all records whose ages are in [15,28].
̶ Equality search 15*.
̶ Follow sibling pointers.

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

University of Toronto Scarborough

CSCD43: Database Systems Technology

How to create an index in SQL ?

 Syntax
CREATE INDEX Index-Name on Table-Name(Columns…);

 Example:
TABLE Customer (First_Name char(50),

Last_Name char(50),
Address char(50),
City char(50),
Country char(25),
Birth_Date date)

CREATE INDEX IDX_CUSTOMER_LAST_NAME on CUSTOMER (Last_Name)

CREATE INDEX IDX_CUSTOMER_LOCATION on CUSTOMER (City, Country)

University of Toronto Scarborough

CSCD43: Database Systems Technology

How to drop an index in SQL ?

 Syntax
DROP INDEX Index-Name;

 Example:

DROP INDEX IDX_CUSTOMER_LAST_NAME;

DROP INDEX IDX_CUSTOMER_LOCATION;

 PostgreSQL tables
select * from pg_index;

University of Toronto Scarborough

CSCD43: Database Systems Technology

When to use an Index?
 Table contains a large number of records (a rule of thumb is

that a large table contains over 100,000 records/tuples)
 The field contains a wide range of values
 The field contains a large number of NULL values
 Application queries frequently use the field in a search

condition or join condition
 Most queries retrieve less than 5% of the table rows

 Before creating an index, must also consider the impact on updates in
the workload!
̶ Trade-off: Indexes can make queries go faster, updates slower. Require

disk space, too.

University of Toronto Scarborough

CSCD43: Database Systems Technology

When not to use an Index?
 The table does not contain a large number of records
 Applications do not use the proposed index field in a query

search condition
 Most queries retrieve more than 5% of the table records
 Applications frequently insert or modify table data

University of Toronto Scarborough

CSCD43: Database Systems Technology

Physical Design
A. Specify Storage parameters

̶ http://www.postgresql.org/docs/8.1/static/runtime-config.html

̶ Will discuss in few weeks

A. Specify Indices

http://www.postgresql.org/docs/8.1/static/runtime-config.html�

University of Toronto ScarboroughUniversity of Toronto Scarborough

Transactions

University of Toronto Scarborough

CSCD43: Database Systems Technology

The Setting

 Database systems are normally being accessed
by many users or processes at the same time.
̶ Both queries and modifications.

 Unlike Operating Systems, which support
interaction of processes, a DMBS needs to keep
processes from troublesome interactions.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Bad Interaction

 You and your spouse each take $100 from
different ATM’s at about the same time.
̶ The DBMS better make sure one account deduction

doesn’t get lost.
 Compare: An OS allows two people to edit a

document at the same time. If both write, one’s
changes get lost.

University of Toronto Scarborough

CSCD43: Database Systems Technology

ACID Transactions

 A DBMS is expected to support “ACID
transactions,” which are:
̶ Atomic : Either the whole process is done or none is.
̶ Consistent : Database constraints are preserved.
̶ Isolated : It appears to the user as if only one process

executes at a time.
̶ Durable : Effects of a process do not get lost if the

system crashes.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Transactions in SQL

 SQL supports transactions, often behind the
scenes.
̶ Each statement issued at the generic query interface

is a transaction by itself.
̶ In programming interfaces like Embedded SQL or

PSM, a transaction begins the first time an SQL
statement is executed and ends with the program or
an explicit end.

University of Toronto Scarborough

CSCD43: Database Systems Technology

COMMIT

 The SQL statement COMMIT causes a
transaction to complete.
̶ It’s database modifications are now permanent in

the database.

University of Toronto Scarborough

CSCD43: Database Systems Technology

ROLLBACK

 The SQL statement ROLLBACK also
causes the transaction to end, but by
aborting.
̶ No effects on the database.

 Failures like division by 0 can also cause
rollback, even if the programmer does not
request it.

University of Toronto Scarborough

CSCD43: Database Systems Technology

An Example: Interacting Processes

 Assume the usual Sells(bar,beer,price)
relation, and suppose that Joe’s Bar sells only
Bud for $2.50 and Miller for $3.00.

 Sally is querying Sells for the highest and
lowest price Joe charges.

 Joe decides to stop selling Bud and Miller, but
to sell only Heineken at $3.50.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Sally’s Program

 Sally executes the following two SQL
statements, which we call (min) and (max), to
help remember what they do.

(max)SELECT MAX(price) FROM Sells
WHERE bar = ‘Joe’’s Bar’;

(min) SELECT MIN(price) FROM Sells
WHERE bar = ‘Joe’’s Bar’;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Joe’s Program

 At about the same time, Joe executes the
following steps, which have the mnemonic
names (del) and (ins).

(del) DELETE FROM Sells
WHERE bar = ‘Joe’’s Bar’;

(ins) INSERT INTO Sells
VALUES(‘Joe’’s Bar’, ‘Heineken’,

3.50);

University of Toronto Scarborough

CSCD43: Database Systems Technology

Interleaving of Statements

 Although (max) must come before (min) and
(del) must come before (ins), there are no other
constraints on the order of these statements,
unless we group Sally’s and/or Joe’s statements
into transactions.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Strange Interleaving

 Suppose the steps execute in the order
(max)(del)(ins)(min).

Joe’s Prices:
Statement:
Result:

 Sally sees MAX < MIN!

2.50, 3.00

(del) (ins)

3.50

(min)

3.50

2.50, 3.00

(max)

3.00

University of Toronto Scarborough

CSCD43: Database Systems Technology

Fixing the Problem With Transactions
 If we group Sally’s statements (max)(min) into

one transaction, then she cannot see this
inconsistency.

 She see’s Joe’s prices at some fixed time.
̶ Either before or after he changes prices, or in the

middle, but the MAX and MIN are computed from the
same prices.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Another Problem: Rollback

 Suppose Joe executes (del)(ins), but after
executing these statements, thinks better of it
and issues a ROLLBACK statement.

 If Sally executes her transaction after (ins) but
before the rollback, she sees a value, 3.50,
that never existed in the database.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Solution

 If Joe executes (del)(ins) as a transaction, its
effect cannot be seen by others until the
transaction executes COMMIT.
̶ If the transaction executes ROLLBACK instead, then

its effects can never be seen.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Isolation Levels

 SQL defines four isolation levels = choices
about what interactions are allowed by
transactions that execute at about the same
time.

 How a DBMS implements these isolation levels
is highly complex, and a typical DBMS provides
its own options.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Choosing the Isolation Level

 Within a transaction, we can say:
SET TRANSACTION ISOLATION LEVEL X

where X =
1. SERIALIZABLE
2. REPEATABLE READ
3. READ COMMITTED
4. READ UNCOMMITTED

University of Toronto Scarborough

CSCD43: Database Systems Technology

Serializable Transactions

 If Sally = (max)(min) and Joe = (del)(ins) are
each transactions, and Sally runs with
isolation level SERIALIZABLE, then she will
see the database either before or after Joe
runs, but not in the middle.

 It’s up to the DBMS vendor to figure out how
to do that, e.g.:
̶ True isolation in time.
̶ Keep Joe’s old prices around to answer Sally’s

queries.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Isolation Level Is Personal Choice

 Your choice, e.g., run serializable, affects
only how you see the database, not how
others see it.

 Example: If Joe Runs serializable, but Sally
doesn’t, then Sally might see no prices for
Joe’s Bar.
̶ i.e., it looks to Sally as if she ran in the middle of

Joe’s transaction.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Read-Commited Transactions

 If Sally runs with isolation level READ
COMMITTED, then she can see only committed
data, but not necessarily the same data each
time.

 Example: Under READ COMMITTED, the
interleaving (max)(del)(ins)(min) is allowed, as
long as Joe commits.
̶ Sally sees MAX < MIN.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Repeatable-Read Transactions

 Requirement is like read-committed, plus: if data
is read again, then everything seen the first time
will be seen the second time.
̶ But the second and subsequent reads may see more

tuples as well.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Repeatable Read

 Suppose Sally runs under REPEATABLE READ,
and the order of execution is
(max)(del)(ins)(min).
̶ (max) sees prices 2.50 and 3.00.
̶ (min) can see 3.50, but must also see 2.50 and 3.00,

because they were seen on the earlier read by (max).

University of Toronto Scarborough

CSCD43: Database Systems Technology

Read Uncommitted

 A transaction running under READ
UNCOMMITTED can see data in the database,
even if it was written by a transaction that has
not committed (and may never).

 Example: If Sally runs under READ
UNCOMMITTED, she could see a price 3.50
even if Joe later aborts.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Transaction in PostgreSQL

 Syntax
BEGIN;

…….
COMMIT;

 Example
BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice';

-- etc etc….
COMMIT;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Transaction in PostgreSQL

 Example
BEGIN;

UPDATE accounts SET balance = balance - 100.00 WHERE name
= 'Alice';

SAVEPOINT my_savepoint;
UPDATE accounts SET balance = balance + 100.00 WHERE

name = 'Bob';
-- oops ... forget that and use Wally's account
ROLLBACK TO my_savepoint;
UPDATE accounts SET balance = balance + 100.00 WHERE

name = 'Wally';
COMMIT;

University of Toronto ScarboroughUniversity of Toronto Scarborough

SQL/PSM/PL-SQL

University of Toronto Scarborough

CSCD43: Database Systems Technology

Steps in Database Design
Conceptual Design

Logical Design

Physical Design

Transactions

PL/SQL

Security Design

Data Population

Query Optimization

University of Toronto Scarborough

CSCD43: Database Systems Technology

Stored Procedures

 An extension to SQL, called SQL/PSM, or
“persistent, stored modules,” allows us to
store procedures as database schema
elements.

 The programming style is a mixture of
conventional statements (if, while, etc.) and
SQL.

 Let’s us do things we cannot do in SQL alone.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Stored Procedures
 A great technique for enhancing modularity of

software

DB

Select *
from
where…;

update …;

X.java Y.java

Call Q1; Call Q2;

X.java Y.java

Q1 Q2DB

University of Toronto Scarborough

CSCD43: Database Systems Technology

Basic PSM Form

CREATE PROCEDURE <name> (
<parameter list>)

<optional local declarations>
<body>;

 Function alternative:
CREATE FUNCTION <name> (

<parameter list>) RETURNS <type>

University of Toronto Scarborough

CSCD43: Database Systems Technology

Parameters in PSM

 Unlike the usual name-type pairs in languages
like C, PSM uses mode-name-type triples,
where the mode can be:
̶ IN = procedure uses value, does not change value.
̶ OUT = procedure changes, does not use.
̶ INOUT = both.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Stored Procedure

 Let’s write a procedure that takes two arguments
b and p, and adds a tuple to Sells that has bar =
’Joe’’s Bar’, beer = b, and price = p.
̶ Used by Joe to add to his menu more easily.

University of Toronto Scarborough

CSCD43: Database Systems Technology

The Procedure

CREATE PROCEDURE JoeMenu (
IN b CHAR(20),
IN p REAL

)
INSERT INTO Sells
VALUES(’Joe’’s Bar’, b, p);

Parameters are both
read-only, not changed

The body ---
a single insertion

University of Toronto Scarborough

CSCD43: Database Systems Technology

Invoking Procedures

 Use SQL/PSM statement CALL, with the
name of the desired procedure and
arguments.

 Example:
CALL JoeMenu(’Moosedrool’, 5.00);

 Functions used in SQL expressions where a
value of their return type is appropriate.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Types of PSM statements -- 1

 RETURN <expression> sets the return value of
a function.
̶ Unlike C, etc., RETURN does not terminate function

execution.
 DECLARE <name> <type> used to declare

local variables.
 BEGIN . . . END for groups of statements.

̶ Separate by semicolons.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Types of PSM Statements -- 2

 Assignment statements:
SET <variable> = <expression>;

̶ Example: SET b = ’Bud’;
 Statement labels: give a statement a label by

prefixing a name and a colon.

University of Toronto Scarborough

CSCD43: Database Systems Technology

IF statements

 Simplest form:
IF <condition> THEN

<statements(s)>
END IF;

 Add ELSE <statement(s)> if desired, as
IF . . . THEN . . . ELSE . . . END IF;

 Add additional cases by ELSEIF <statements(s)>:
IF … THEN … ELSEIF … ELSEIF … ELSE … END IF;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: IF

 Let’s rate bars by how many customers they
have, based on Frequents(drinker, bar).
̶ <100 customers: ‘unpopular’.
̶ 100-199 customers: ‘average’.
̶ >= 200 customers: ‘popular’.

 Function Rate(b) rates bar b.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: IF (continued)

CREATE FUNCTION Rate (IN b CHAR(20))
RETURNS CHAR(10)
DECLARE cust INTEGER;

BEGIN
SET cust = (SELECT COUNT(*) FROM Frequents

WHERE bar = b);
IF cust < 100 THEN RETURN ’unpopular’
ELSEIF cust < 200 THEN RETURN ’average’
ELSE RETURN ’popular’
END IF;

END;

Number of
customers of

bar b

Return occurs here

Nested
IF statement

University of Toronto Scarborough

CSCD43: Database Systems Technology

Loops

 Basic form:
LOOP <statements> END LOOP;

 Exit from a loop by:
LEAVE <loop name>

 The <loop name> is associated with a loop by
prepending the name and a colon to the
keyword LOOP.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Exiting a Loop

loop1: LOOP
. . .
LEAVE loop1;
. . .

END LOOP;

If this statement is executed . . .

Control winds up here

University of Toronto Scarborough

CSCD43: Database Systems Technology

Other Loop Forms

 WHILE <condition>
DO <statements>

END WHILE;
 REPEAT <statements>

UNTIL <condition>
END REPEAT;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Queries

 General SELECT-FROM-WHERE queries are
not permitted in PSM.

 There are three ways to get the effect of a
query:

1. Queries producing one value can be the expression
in an assignment.

2. Single-row SELECT . . . INTO.
3. Cursors.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Assignment/Query

 If p is a local variable and Sells(bar, beer, price)
the usual relation, we can get the price Joe
charges for Bud by:

SET p = (SELECT price FROM Sells
WHERE bar = ’Joe’’s Bar’ AND

beer = ’Bud’);

University of Toronto Scarborough

CSCD43: Database Systems Technology

SELECT . . . INTO

 An equivalent way to get the value of a query
that is guaranteed to return a single tuple is by
placing INTO <variable> after the SELECT
clause.

 Example:
SELECT price INTO p FROM Sells
WHERE bar = ’Joe’’s Bar’ AND

beer = ’Bud’;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Cursors

 A cursor is essentially a tuple-variable that
ranges over all tuples in the result of some
query.

 Declare a cursor c by:
DECLARE c CURSOR FOR <query>;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Opening and Closing Cursors

 To use cursor c, we must issue the command:
OPEN c;

̶ The query of c is evaluated, and c is set to point to
the first tuple of the result.

 When finished with c, issue command:
CLOSE c;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Fetching Tuples From a Cursor

 To get the next tuple from cursor c, issue
command:

FETCH FROM c INTO x1, x2,…,xn ;
 The x ’s are a list of variables, one for each

component of the tuples referred to by c.
 c is moved automatically to the next tuple.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Breaking Cursor Loops -- 1

 The usual way to use a cursor is to create a loop
with a FETCH statement, and do something with
each tuple fetched.

 A tricky point is how we get out of the loop when
the cursor has no more tuples to deliver.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Breaking Cursor Loops -- 2

 Each SQL operation returns a status, which is a
5-digit number.
̶ For example, 00000 = “Everything OK,” and 02000 =

“Failed to find a tuple.”
 In PSM, we can get the value of the status in a

variable called SQLSTATE.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Breaking Cursor Loops -- 3

 We may declare a condition, which is a boolean
variable that is true if and only if SQLSTATE has
a particular value.

 Example: We can declare condition NotFound to
represent 02000 by:

DECLARE NotFound CONDITION FOR
SQLSTATE ’02000’;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Breaking Cursor Loops -- 4

 The structure of a cursor loop is thus:
cursorLoop: LOOP

…
FETCH c INTO … ;
IF NotFound THEN LEAVE cursorLoop;
END IF;
…

END LOOP;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Cursor

 Let’s write a procedure that examines Sells(bar,
beer, price), and raises by $1 the price of all
beers at Joe’s Bar that are under $3.
̶ Yes, we could write this as a simple UPDATE, but the

details are instructive anyway.

University of Toronto Scarborough

CSCD43: Database Systems Technology

The Needed Declarations

CREATE PROCEDURE JoeGouge()
DECLARE theBeer CHAR(20);
DECLARE thePrice REAL;
DECLARE NotFound CONDITION FOR

SQLSTATE ’02000’;
DECLARE c CURSOR FOR

(SELECT beer, price FROM Sells
WHERE bar = ’Joe’’s Bar’);

Used to hold
beer-price pairs

when fetching
through cursor c

Returns Joe’s menu

University of Toronto Scarborough

CSCD43: Database Systems Technology

The Procedure Body

BEGIN
OPEN c;
menuLoop: LOOP

FETCH c INTO theBeer, thePrice;
IF NotFound THEN LEAVE menuLoop END IF;
IF thePrice < 3.00 THEN

UPDATE Sells SET price = thePrice+1.00
WHERE bar = ’Joe’’s Bar’ AND beer = theBeer;

END IF;
END LOOP;
CLOSE c;

END;

Check if the recent
FETCH failed to

get a tuple

If Joe charges less than $3 for
the beer, raise it’s price at

Joe’s Bar by $1.

	CSCD43: Database Systems Technology���Lecture 4
	Steps in Database Design
	Physical Design
	Storage and Indexing
	Recall Index strategies
	Recall Index strategies
	Question?
	Multi-level Index
	B+ Tree Indexes
	Example B+ Tree
	B+ Tree Equality Search
	B+ Tree Range Search
	How to create an index in SQL ?
	How to drop an index in SQL ?
	When to use an Index?
	When not to use an Index?
	Physical Design
	Transactions
	The Setting
	Example: Bad Interaction
	ACID Transactions
	Transactions in SQL
	COMMIT
	ROLLBACK
	An Example: Interacting Processes
	Sally’s Program
	Joe’s Program
	Interleaving of Statements
	Example: Strange Interleaving
	Fixing the Problem With Transactions
	Another Problem: Rollback
	Solution
	Isolation Levels
	Choosing the Isolation Level
	Serializable Transactions
	Isolation Level Is Personal Choice
	Read-Commited Transactions
	Repeatable-Read Transactions
	Example: Repeatable Read
	Read Uncommitted
	Transaction in PostgreSQL
	Transaction in PostgreSQL
	SQL/PSM/PL-SQL
	Steps in Database Design
	Stored Procedures
	Stored Procedures
	Basic PSM Form
	Parameters in PSM
	Example: Stored Procedure
	The Procedure
	Invoking Procedures
	Types of PSM statements -- 1
	Types of PSM Statements -- 2
	IF statements
	Example: IF
	Example: IF (continued)
	Loops
	Example: Exiting a Loop
	Other Loop Forms
	Queries
	Example: Assignment/Query
	SELECT . . . INTO
	Cursors
	Opening and Closing Cursors
	Fetching Tuples From a Cursor
	Breaking Cursor Loops -- 1
	Breaking Cursor Loops -- 2
	Breaking Cursor Loops -- 3
	Breaking Cursor Loops -- 4
	Example: Cursor
	The Needed Declarations
	The Procedure Body

