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Steps in Database Design
Conceptual Design

Logical Design

Physical Design

Transactions

PL/SQL

Security Design

Data Population

Query Optimization
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Physical Design
A. Specify Storage parameters

B. Specify Indices
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Storage and Indexing
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Recall Index strategies
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Recall Index strategies
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 What if index is too large to search sequentially?

Question?
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Multi-level Index
 What if the index itself is too big for 

memory ?
 Relation size = n = 1,000,000,000
 Block size = 100 tuples per block
 So, number of pages = 10,000,000
 Keeping one entry per page takes too 

much space
 Solution?

̶ Build an index on the index itself
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B+ Tree Indexes

 Leaf pages contain data entries, and are chained (prev & next)
 Non-leaf pages contain index entries and direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages 
Leaf
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Example B+ Tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <=  17 Entries >  17
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B+ Tree Equality Search

 Search begins at root, and key comparisons 
direct it to a leaf.

 Search for 15*…

 Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13
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B+ Tree Range Search

 Search all records whose ages are in [15,28].
̶ Equality search 15*.
̶ Follow sibling pointers.

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13
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How to create an index in SQL ?

 Syntax
CREATE INDEX  Index-Name on Table-Name(Columns…);

 Example:
TABLE Customer (First_Name char(50),

Last_Name char(50),
Address char(50),
City char(50),
Country char(25),
Birth_Date date)

CREATE INDEX  IDX_CUSTOMER_LAST_NAME on CUSTOMER (Last_Name)

CREATE INDEX IDX_CUSTOMER_LOCATION on CUSTOMER (City, Country)
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How to drop an index in SQL ?

 Syntax
DROP INDEX  Index-Name;

 Example:

DROP INDEX  IDX_CUSTOMER_LAST_NAME;

DROP INDEX IDX_CUSTOMER_LOCATION;

 PostgreSQL tables
select * from pg_index;
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When to use an Index?
 Table contains a large number of records (a rule of thumb is 

that a large table contains over 100,000 records/tuples) 
 The field contains a wide range of values
 The field contains a large number of NULL values
 Application queries frequently use the field in a search 

condition or join condition
 Most queries retrieve less than 5% of the table rows

 Before creating an index, must also consider the impact on updates in 
the workload!
̶ Trade-off: Indexes can make queries go faster, updates slower.  Require 

disk space, too.
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When not to use an Index?
 The table does not contain a large number of records
 Applications do not use the proposed index field in a query 

search condition
 Most queries retrieve more than 5% of the table records
 Applications frequently insert or modify table data
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Physical Design
A. Specify Storage parameters

̶ http://www.postgresql.org/docs/8.1/static/runtime-config.html

̶ Will discuss in few weeks

A. Specify Indices

http://www.postgresql.org/docs/8.1/static/runtime-config.html�
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The Setting

 Database systems are normally being accessed 
by many users or processes at the same time.
̶ Both queries and modifications.

 Unlike Operating Systems, which support 
interaction of processes, a DMBS needs to keep 
processes from troublesome interactions.
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Example: Bad Interaction

 You and your spouse each take $100 from 
different ATM’s at about the same time.
̶ The DBMS better make sure one account deduction 

doesn’t get lost.
 Compare: An OS allows two people to edit a 

document at the same time.  If both write, one’s 
changes get lost.
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ACID Transactions

 A DBMS is expected to support “ACID 
transactions,” which are:
̶ Atomic : Either the whole process is done or none is.
̶ Consistent : Database constraints are preserved.
̶ Isolated : It appears  to the user as if only one process 

executes at a time.
̶ Durable : Effects of a process do not get lost if the 

system crashes.
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Transactions in SQL

 SQL supports transactions, often behind the 
scenes.
̶ Each statement issued at the generic query interface 

is a transaction by itself.
̶ In programming interfaces like Embedded SQL or 

PSM, a transaction begins the first time an SQL 
statement is executed and ends with the program or 
an explicit end.
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COMMIT

 The SQL statement COMMIT causes a 
transaction to complete.
̶ It’s database modifications are now permanent in 

the database.
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ROLLBACK

 The SQL statement ROLLBACK also 
causes the transaction to end, but by 
aborting.
̶ No effects on the database.

 Failures like division by 0 can also cause 
rollback, even if the programmer does not 
request it.
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An Example: Interacting Processes

 Assume the usual Sells(bar,beer,price) 
relation, and suppose that Joe’s Bar sells only 
Bud for $2.50 and Miller for $3.00.

 Sally is querying Sells for the highest and 
lowest price Joe charges.

 Joe decides to stop selling Bud and Miller, but 
to sell only Heineken at $3.50.
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Sally’s Program

 Sally executes the following two SQL 
statements, which we call (min) and (max), to 
help remember what they do.

(max)SELECT MAX(price) FROM Sells
WHERE bar = ‘Joe’’s Bar’;

(min) SELECT MIN(price) FROM Sells
WHERE bar = ‘Joe’’s Bar’;
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Joe’s Program

 At about the same time, Joe executes the 
following steps, which have the mnemonic 
names (del) and (ins).

(del) DELETE FROM Sells
WHERE bar = ‘Joe’’s Bar’;

(ins) INSERT INTO Sells
VALUES(‘Joe’’s Bar’, ‘Heineken’,

3.50);
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Interleaving of Statements

 Although (max) must come before (min) and 
(del) must come before (ins), there are no other 
constraints on the order of these statements, 
unless we group Sally’s and/or Joe’s statements 
into transactions.
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Example: Strange Interleaving

 Suppose the steps execute in the order 
(max)(del)(ins)(min).

Joe’s Prices:
Statement:
Result:

 Sally sees MAX < MIN!

2.50, 3.00

(del) (ins)

3.50

(min)

3.50

2.50, 3.00

(max)

3.00
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Fixing the Problem With Transactions
 If we group Sally’s statements (max)(min) into 

one transaction, then she cannot see this 
inconsistency.

 She see’s Joe’s prices at some fixed time.
̶ Either before or after he changes prices, or in the 

middle, but the MAX and MIN are computed from the 
same prices.



University of Toronto Scarborough

CSCD43: Database Systems Technology

Another Problem: Rollback

 Suppose Joe executes (del)(ins), but after 
executing these statements, thinks better of it 
and issues a ROLLBACK statement.

 If Sally executes her transaction after (ins) but 
before the rollback, she sees a value, 3.50, 
that never existed in the database.
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Solution

 If Joe executes (del)(ins) as a transaction, its 
effect cannot be seen by others until the 
transaction executes COMMIT.
̶ If the transaction executes ROLLBACK instead, then 

its effects can never be seen.
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Isolation Levels

 SQL defines four isolation levels = choices 
about what interactions are allowed by 
transactions that execute at about the same 
time.

 How a DBMS implements these isolation levels 
is highly complex, and a typical DBMS provides 
its own options.
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Choosing the Isolation Level

 Within a transaction, we can say:
SET TRANSACTION ISOLATION LEVEL X

where X =
1. SERIALIZABLE
2. REPEATABLE READ
3. READ COMMITTED
4. READ UNCOMMITTED
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Serializable Transactions

 If Sally = (max)(min) and Joe = (del)(ins) are 
each transactions, and Sally runs with 
isolation level SERIALIZABLE, then she will 
see the database either before or after Joe 
runs, but not in the middle.

 It’s up to the DBMS vendor to figure out how 
to do that, e.g.:
̶ True isolation in time.
̶ Keep Joe’s old prices around to answer Sally’s 

queries.
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Isolation Level Is Personal Choice

 Your choice, e.g., run serializable, affects 
only how you see the database, not how 
others see it.

 Example: If Joe Runs serializable, but Sally 
doesn’t, then Sally might see no prices for 
Joe’s Bar.
̶ i.e., it looks to Sally as if she ran in the middle of 

Joe’s transaction.



University of Toronto Scarborough

CSCD43: Database Systems Technology

Read-Commited Transactions

 If Sally runs with isolation level READ 
COMMITTED, then she can see only committed 
data, but not necessarily the same data each 
time.

 Example: Under READ COMMITTED, the 
interleaving (max)(del)(ins)(min) is allowed, as 
long as Joe commits.
̶ Sally sees MAX < MIN.
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Repeatable-Read Transactions

 Requirement is like read-committed, plus: if data 
is read again, then everything seen the first time 
will be seen the second time.
̶ But the second and subsequent reads may see more

tuples as well. 
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Example: Repeatable Read

 Suppose Sally runs under REPEATABLE READ, 
and the order of execution is 
(max)(del)(ins)(min).
̶ (max) sees prices 2.50 and 3.00.
̶ (min) can see 3.50, but must also see 2.50 and 3.00, 

because they were seen on the earlier read by (max).
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Read Uncommitted

 A transaction running under READ 
UNCOMMITTED can see data in the database, 
even if it was written by a transaction that has 
not committed (and may never).

 Example: If Sally runs under READ 
UNCOMMITTED, she could see a price 3.50 
even if Joe later aborts.
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Transaction in PostgreSQL

 Syntax
BEGIN;

…….
COMMIT;

 Example
BEGIN; 

UPDATE accounts SET balance = balance - 100.00 
WHERE name = 'Alice'; 

-- etc etc…. 
COMMIT;
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Transaction in PostgreSQL

 Example
BEGIN; 

UPDATE accounts SET balance = balance - 100.00 WHERE name 
= 'Alice'; 

SAVEPOINT my_savepoint; 
UPDATE accounts SET balance = balance + 100.00 WHERE

name = 'Bob'; 
-- oops ... forget that and use Wally's account 
ROLLBACK TO my_savepoint; 
UPDATE accounts SET balance = balance + 100.00 WHERE

name = 'Wally'; 
COMMIT;
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SQL/PSM/PL-SQL
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Steps in Database Design
Conceptual Design

Logical Design

Physical Design

Transactions

PL/SQL

Security Design

Data Population

Query Optimization
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Stored Procedures

 An extension to SQL, called SQL/PSM, or 
“persistent, stored modules,” allows us to 
store procedures as database schema 
elements.

 The programming style is a mixture of 
conventional statements (if, while, etc.) and 
SQL.

 Let’s us do things we cannot do in SQL alone.
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Stored Procedures
 A great technique for enhancing modularity of 

software

DB

Select * 
from  
where…;

update …;

X.java Y.java

Call  Q1; Call Q2;

X.java Y.java

Q1 Q2DB
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Basic PSM Form

CREATE PROCEDURE <name> (
<parameter list> )

<optional local declarations>
<body>;

 Function alternative:
CREATE FUNCTION <name> (

<parameter list> ) RETURNS <type>
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Parameters in PSM

 Unlike the usual name-type pairs in languages 
like C, PSM uses mode-name-type triples, 
where the mode can be:
̶ IN = procedure uses value, does not change value.
̶ OUT = procedure changes, does not use.
̶ INOUT = both.
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Example: Stored Procedure

 Let’s write a procedure that takes two arguments 
b and p, and adds a tuple to Sells that has bar = 
’Joe’’s Bar’, beer = b, and price = p.
̶ Used by Joe to add to his menu more easily.
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The Procedure

CREATE PROCEDURE JoeMenu (
IN b CHAR(20),
IN p REAL

)
INSERT INTO Sells
VALUES(’Joe’’s Bar’, b, p);

Parameters are both
read-only, not changed

The body ---
a single insertion
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Invoking Procedures

 Use SQL/PSM statement CALL, with the 
name of the desired procedure and 
arguments.

 Example: 
CALL JoeMenu(’Moosedrool’, 5.00);

 Functions used in SQL expressions where a 
value of their return type is appropriate.
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Types of PSM statements -- 1

 RETURN <expression> sets the return value of 
a function.
̶ Unlike C, etc., RETURN does not terminate function 

execution.
 DECLARE <name> <type> used to declare 

local variables.
 BEGIN . . . END for groups of statements.

̶ Separate by semicolons.
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Types of PSM Statements -- 2

 Assignment statements:
SET <variable> = <expression>;

̶ Example: SET b = ’Bud’;
 Statement labels: give a statement a label by 

prefixing a name and a colon.
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IF statements

 Simplest form:
IF <condition> THEN

<statements(s)>
END IF;

 Add ELSE <statement(s)> if desired, as
IF . . . THEN . . . ELSE . . . END IF;

 Add additional cases by ELSEIF <statements(s)>:
IF … THEN … ELSEIF … ELSEIF … ELSE … END IF;
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Example: IF

 Let’s rate bars by how many customers they 
have, based on     Frequents(drinker, bar).
̶ <100 customers: ‘unpopular’.
̶ 100-199 customers: ‘average’.
̶ >= 200 customers: ‘popular’.

 Function Rate(b) rates bar b.



University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: IF (continued)

CREATE FUNCTION Rate (IN b CHAR(20) )
RETURNS CHAR(10)
DECLARE cust INTEGER;

BEGIN
SET cust = (SELECT COUNT(*) FROM Frequents

WHERE bar = b);
IF cust < 100 THEN RETURN ’unpopular’
ELSEIF cust < 200 THEN RETURN ’average’
ELSE RETURN ’popular’
END IF;

END;

Number of
customers of

bar b

Return occurs here

Nested
IF statement
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Loops

 Basic form:
LOOP <statements> END LOOP;

 Exit from a loop by:
LEAVE <loop name>

 The <loop name> is associated with a loop by 
prepending the name and a colon to the 
keyword LOOP.
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Example: Exiting a Loop

loop1: LOOP
. . .
LEAVE loop1;
. . .

END LOOP;

If this statement is executed . . .

Control winds up here
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Other Loop Forms

 WHILE <condition>
DO <statements>

END WHILE;
 REPEAT <statements>

UNTIL <condition>
END REPEAT;



University of Toronto Scarborough

CSCD43: Database Systems Technology

Queries

 General SELECT-FROM-WHERE queries are 
not permitted in PSM.

 There are three ways to get the effect of a 
query:

1. Queries producing one value can be the expression 
in an assignment.

2. Single-row SELECT . . . INTO.
3. Cursors.
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Example: Assignment/Query

 If p is a local variable and Sells(bar, beer, price) 
the usual relation, we can get the price Joe 
charges for Bud by:

SET p = (SELECT price FROM Sells
WHERE bar = ’Joe’’s Bar’ AND

beer = ’Bud’);
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SELECT . . . INTO

 An equivalent way to get the value of a query 
that is guaranteed to return a single tuple is by 
placing INTO <variable> after the SELECT 
clause.

 Example:
SELECT price INTO p FROM Sells
WHERE bar = ’Joe’’s Bar’ AND

beer = ’Bud’;
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Cursors

 A cursor is essentially a tuple-variable that 
ranges over all tuples in the result of some 
query.

 Declare a cursor c by:
DECLARE c CURSOR FOR <query>;
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Opening and Closing Cursors

 To use cursor c, we must issue the command:
OPEN c;

̶ The query of c is evaluated, and c is set to point to 
the first tuple of the result.

 When finished with c, issue command:
CLOSE c;
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Fetching Tuples From a Cursor

 To get the next tuple from cursor c, issue 
command:

FETCH FROM c INTO x1, x2,…,xn ;
 The x ’s are a list of variables, one for each 

component of the tuples referred to by c.
 c is moved automatically to the next tuple.
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Breaking Cursor Loops -- 1

 The usual way to use a cursor is to create a loop 
with a FETCH statement, and do something with 
each tuple fetched.

 A tricky point is how we get out of the loop when 
the cursor has no more tuples to deliver.
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Breaking Cursor Loops -- 2

 Each SQL operation returns a status, which is a 
5-digit number.
̶ For example, 00000 = “Everything OK,” and 02000 = 

“Failed to find a tuple.”
 In PSM, we can get the value of the status in a 

variable called SQLSTATE.
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Breaking Cursor Loops -- 3

 We may declare a condition, which is a boolean 
variable that is true if and only if SQLSTATE has 
a particular value.

 Example: We can declare condition NotFound to 
represent 02000 by:

DECLARE NotFound CONDITION FOR
SQLSTATE ’02000’;
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Breaking Cursor Loops -- 4

 The structure of a cursor loop is thus:
cursorLoop: LOOP

…
FETCH c INTO … ;
IF NotFound THEN LEAVE cursorLoop;
END IF;
…

END LOOP;
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Example: Cursor

 Let’s write a procedure that examines Sells(bar, 
beer, price), and raises by $1 the price of all 
beers at Joe’s Bar that are under $3.
̶ Yes, we could write this as a simple UPDATE, but the 

details are instructive anyway.
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The Needed Declarations

CREATE PROCEDURE JoeGouge( )
DECLARE theBeer CHAR(20);
DECLARE thePrice REAL;
DECLARE NotFound CONDITION FOR

SQLSTATE ’02000’;
DECLARE c CURSOR FOR

(SELECT beer, price FROM Sells
WHERE bar = ’Joe’’s Bar’);

Used to hold
beer-price pairs

when fetching
through cursor c

Returns Joe’s menu
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The Procedure Body

BEGIN
OPEN c;
menuLoop: LOOP

FETCH c INTO theBeer, thePrice;
IF NotFound THEN LEAVE menuLoop END IF;
IF thePrice < 3.00 THEN

UPDATE Sells SET price = thePrice+1.00
WHERE bar = ’Joe’’s Bar’ AND beer = theBeer;

END IF;
END LOOP;
CLOSE c;

END;

Check if the recent
FETCH failed to

get a tuple

If Joe charges less than $3 for
the beer, raise it’s price at

Joe’s Bar by $1.
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