
University of Toronto ScarboroughUniversity of Toronto Scarborough

CSCD43: Database Systems
Technology

Lecture 4

Wael Aboulsaadat

Acknowledgment: these slides are based on Prof. Garcia-Molina & Prof. Ullman
slides accompanying the course’s textbook.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Steps in Database Design
Conceptual Design

Logical Design

Physical Design

Transactions

PL/SQL

Security Design

Data Population

Query Optimization

University of Toronto Scarborough

CSCD43: Database Systems Technology

Physical Design
A. Specify Storage parameters

B. Specify Indices

University of Toronto ScarboroughUniversity of Toronto Scarborough

Storage and Indexing

University of Toronto Scarborough

CSCD43: Database Systems Technology

Recall Index strategies

University of Toronto Scarborough

CSCD43: Database Systems Technology

Recall Index strategies

University of Toronto Scarborough

CSCD43: Database Systems Technology

 What if index is too large to search sequentially?

Question?

University of Toronto Scarborough

CSCD43: Database Systems Technology

Multi-level Index
 What if the index itself is too big for

memory ?
 Relation size = n = 1,000,000,000
 Block size = 100 tuples per block
 So, number of pages = 10,000,000
 Keeping one entry per page takes too

much space
 Solution?

̶ Build an index on the index itself

University of Toronto Scarborough

CSCD43: Database Systems Technology

B+ Tree Indexes

 Leaf pages contain data entries, and are chained (prev & next)
 Non-leaf pages contain index entries and direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
Leaf

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example B+ Tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

University of Toronto Scarborough

CSCD43: Database Systems Technology

B+ Tree Equality Search

 Search begins at root, and key comparisons
direct it to a leaf.

 Search for 15*…

 Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

University of Toronto Scarborough

CSCD43: Database Systems Technology

B+ Tree Range Search

 Search all records whose ages are in [15,28].
̶ Equality search 15*.
̶ Follow sibling pointers.

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

University of Toronto Scarborough

CSCD43: Database Systems Technology

How to create an index in SQL ?

 Syntax
CREATE INDEX Index-Name on Table-Name(Columns…);

 Example:
TABLE Customer (First_Name char(50),

Last_Name char(50),
Address char(50),
City char(50),
Country char(25),
Birth_Date date)

CREATE INDEX IDX_CUSTOMER_LAST_NAME on CUSTOMER (Last_Name)

CREATE INDEX IDX_CUSTOMER_LOCATION on CUSTOMER (City, Country)

University of Toronto Scarborough

CSCD43: Database Systems Technology

How to drop an index in SQL ?

 Syntax
DROP INDEX Index-Name;

 Example:

DROP INDEX IDX_CUSTOMER_LAST_NAME;

DROP INDEX IDX_CUSTOMER_LOCATION;

 PostgreSQL tables
select * from pg_index;

University of Toronto Scarborough

CSCD43: Database Systems Technology

When to use an Index?
 Table contains a large number of records (a rule of thumb is

that a large table contains over 100,000 records/tuples)
 The field contains a wide range of values
 The field contains a large number of NULL values
 Application queries frequently use the field in a search

condition or join condition
 Most queries retrieve less than 5% of the table rows

 Before creating an index, must also consider the impact on updates in
the workload!
̶ Trade-off: Indexes can make queries go faster, updates slower. Require

disk space, too.

University of Toronto Scarborough

CSCD43: Database Systems Technology

When not to use an Index?
 The table does not contain a large number of records
 Applications do not use the proposed index field in a query

search condition
 Most queries retrieve more than 5% of the table records
 Applications frequently insert or modify table data

University of Toronto Scarborough

CSCD43: Database Systems Technology

Physical Design
A. Specify Storage parameters

̶ http://www.postgresql.org/docs/8.1/static/runtime-config.html

̶ Will discuss in few weeks

A. Specify Indices

http://www.postgresql.org/docs/8.1/static/runtime-config.html�

University of Toronto ScarboroughUniversity of Toronto Scarborough

Transactions

University of Toronto Scarborough

CSCD43: Database Systems Technology

The Setting

 Database systems are normally being accessed
by many users or processes at the same time.
̶ Both queries and modifications.

 Unlike Operating Systems, which support
interaction of processes, a DMBS needs to keep
processes from troublesome interactions.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Bad Interaction

 You and your spouse each take $100 from
different ATM’s at about the same time.
̶ The DBMS better make sure one account deduction

doesn’t get lost.
 Compare: An OS allows two people to edit a

document at the same time. If both write, one’s
changes get lost.

University of Toronto Scarborough

CSCD43: Database Systems Technology

ACID Transactions

 A DBMS is expected to support “ACID
transactions,” which are:
̶ Atomic : Either the whole process is done or none is.
̶ Consistent : Database constraints are preserved.
̶ Isolated : It appears to the user as if only one process

executes at a time.
̶ Durable : Effects of a process do not get lost if the

system crashes.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Transactions in SQL

 SQL supports transactions, often behind the
scenes.
̶ Each statement issued at the generic query interface

is a transaction by itself.
̶ In programming interfaces like Embedded SQL or

PSM, a transaction begins the first time an SQL
statement is executed and ends with the program or
an explicit end.

University of Toronto Scarborough

CSCD43: Database Systems Technology

COMMIT

 The SQL statement COMMIT causes a
transaction to complete.
̶ It’s database modifications are now permanent in

the database.

University of Toronto Scarborough

CSCD43: Database Systems Technology

ROLLBACK

 The SQL statement ROLLBACK also
causes the transaction to end, but by
aborting.
̶ No effects on the database.

 Failures like division by 0 can also cause
rollback, even if the programmer does not
request it.

University of Toronto Scarborough

CSCD43: Database Systems Technology

An Example: Interacting Processes

 Assume the usual Sells(bar,beer,price)
relation, and suppose that Joe’s Bar sells only
Bud for $2.50 and Miller for $3.00.

 Sally is querying Sells for the highest and
lowest price Joe charges.

 Joe decides to stop selling Bud and Miller, but
to sell only Heineken at $3.50.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Sally’s Program

 Sally executes the following two SQL
statements, which we call (min) and (max), to
help remember what they do.

(max)SELECT MAX(price) FROM Sells
WHERE bar = ‘Joe’’s Bar’;

(min) SELECT MIN(price) FROM Sells
WHERE bar = ‘Joe’’s Bar’;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Joe’s Program

 At about the same time, Joe executes the
following steps, which have the mnemonic
names (del) and (ins).

(del) DELETE FROM Sells
WHERE bar = ‘Joe’’s Bar’;

(ins) INSERT INTO Sells
VALUES(‘Joe’’s Bar’, ‘Heineken’,

3.50);

University of Toronto Scarborough

CSCD43: Database Systems Technology

Interleaving of Statements

 Although (max) must come before (min) and
(del) must come before (ins), there are no other
constraints on the order of these statements,
unless we group Sally’s and/or Joe’s statements
into transactions.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Strange Interleaving

 Suppose the steps execute in the order
(max)(del)(ins)(min).

Joe’s Prices:
Statement:
Result:

 Sally sees MAX < MIN!

2.50, 3.00

(del) (ins)

3.50

(min)

3.50

2.50, 3.00

(max)

3.00

University of Toronto Scarborough

CSCD43: Database Systems Technology

Fixing the Problem With Transactions
 If we group Sally’s statements (max)(min) into

one transaction, then she cannot see this
inconsistency.

 She see’s Joe’s prices at some fixed time.
̶ Either before or after he changes prices, or in the

middle, but the MAX and MIN are computed from the
same prices.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Another Problem: Rollback

 Suppose Joe executes (del)(ins), but after
executing these statements, thinks better of it
and issues a ROLLBACK statement.

 If Sally executes her transaction after (ins) but
before the rollback, she sees a value, 3.50,
that never existed in the database.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Solution

 If Joe executes (del)(ins) as a transaction, its
effect cannot be seen by others until the
transaction executes COMMIT.
̶ If the transaction executes ROLLBACK instead, then

its effects can never be seen.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Isolation Levels

 SQL defines four isolation levels = choices
about what interactions are allowed by
transactions that execute at about the same
time.

 How a DBMS implements these isolation levels
is highly complex, and a typical DBMS provides
its own options.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Choosing the Isolation Level

 Within a transaction, we can say:
SET TRANSACTION ISOLATION LEVEL X

where X =
1. SERIALIZABLE
2. REPEATABLE READ
3. READ COMMITTED
4. READ UNCOMMITTED

University of Toronto Scarborough

CSCD43: Database Systems Technology

Serializable Transactions

 If Sally = (max)(min) and Joe = (del)(ins) are
each transactions, and Sally runs with
isolation level SERIALIZABLE, then she will
see the database either before or after Joe
runs, but not in the middle.

 It’s up to the DBMS vendor to figure out how
to do that, e.g.:
̶ True isolation in time.
̶ Keep Joe’s old prices around to answer Sally’s

queries.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Isolation Level Is Personal Choice

 Your choice, e.g., run serializable, affects
only how you see the database, not how
others see it.

 Example: If Joe Runs serializable, but Sally
doesn’t, then Sally might see no prices for
Joe’s Bar.
̶ i.e., it looks to Sally as if she ran in the middle of

Joe’s transaction.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Read-Commited Transactions

 If Sally runs with isolation level READ
COMMITTED, then she can see only committed
data, but not necessarily the same data each
time.

 Example: Under READ COMMITTED, the
interleaving (max)(del)(ins)(min) is allowed, as
long as Joe commits.
̶ Sally sees MAX < MIN.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Repeatable-Read Transactions

 Requirement is like read-committed, plus: if data
is read again, then everything seen the first time
will be seen the second time.
̶ But the second and subsequent reads may see more

tuples as well.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Repeatable Read

 Suppose Sally runs under REPEATABLE READ,
and the order of execution is
(max)(del)(ins)(min).
̶ (max) sees prices 2.50 and 3.00.
̶ (min) can see 3.50, but must also see 2.50 and 3.00,

because they were seen on the earlier read by (max).

University of Toronto Scarborough

CSCD43: Database Systems Technology

Read Uncommitted

 A transaction running under READ
UNCOMMITTED can see data in the database,
even if it was written by a transaction that has
not committed (and may never).

 Example: If Sally runs under READ
UNCOMMITTED, she could see a price 3.50
even if Joe later aborts.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Transaction in PostgreSQL

 Syntax
BEGIN;

…….
COMMIT;

 Example
BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice';

-- etc etc….
COMMIT;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Transaction in PostgreSQL

 Example
BEGIN;

UPDATE accounts SET balance = balance - 100.00 WHERE name
= 'Alice';

SAVEPOINT my_savepoint;
UPDATE accounts SET balance = balance + 100.00 WHERE

name = 'Bob';
-- oops ... forget that and use Wally's account
ROLLBACK TO my_savepoint;
UPDATE accounts SET balance = balance + 100.00 WHERE

name = 'Wally';
COMMIT;

University of Toronto ScarboroughUniversity of Toronto Scarborough

SQL/PSM/PL-SQL

University of Toronto Scarborough

CSCD43: Database Systems Technology

Steps in Database Design
Conceptual Design

Logical Design

Physical Design

Transactions

PL/SQL

Security Design

Data Population

Query Optimization

University of Toronto Scarborough

CSCD43: Database Systems Technology

Stored Procedures

 An extension to SQL, called SQL/PSM, or
“persistent, stored modules,” allows us to
store procedures as database schema
elements.

 The programming style is a mixture of
conventional statements (if, while, etc.) and
SQL.

 Let’s us do things we cannot do in SQL alone.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Stored Procedures
 A great technique for enhancing modularity of

software

DB

Select *
from
where…;

update …;

X.java Y.java

Call Q1; Call Q2;

X.java Y.java

Q1 Q2DB

University of Toronto Scarborough

CSCD43: Database Systems Technology

Basic PSM Form

CREATE PROCEDURE <name> (
<parameter list>)

<optional local declarations>
<body>;

 Function alternative:
CREATE FUNCTION <name> (

<parameter list>) RETURNS <type>

University of Toronto Scarborough

CSCD43: Database Systems Technology

Parameters in PSM

 Unlike the usual name-type pairs in languages
like C, PSM uses mode-name-type triples,
where the mode can be:
̶ IN = procedure uses value, does not change value.
̶ OUT = procedure changes, does not use.
̶ INOUT = both.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Stored Procedure

 Let’s write a procedure that takes two arguments
b and p, and adds a tuple to Sells that has bar =
’Joe’’s Bar’, beer = b, and price = p.
̶ Used by Joe to add to his menu more easily.

University of Toronto Scarborough

CSCD43: Database Systems Technology

The Procedure

CREATE PROCEDURE JoeMenu (
IN b CHAR(20),
IN p REAL

)
INSERT INTO Sells
VALUES(’Joe’’s Bar’, b, p);

Parameters are both
read-only, not changed

The body ---
a single insertion

University of Toronto Scarborough

CSCD43: Database Systems Technology

Invoking Procedures

 Use SQL/PSM statement CALL, with the
name of the desired procedure and
arguments.

 Example:
CALL JoeMenu(’Moosedrool’, 5.00);

 Functions used in SQL expressions where a
value of their return type is appropriate.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Types of PSM statements -- 1

 RETURN <expression> sets the return value of
a function.
̶ Unlike C, etc., RETURN does not terminate function

execution.
 DECLARE <name> <type> used to declare

local variables.
 BEGIN . . . END for groups of statements.

̶ Separate by semicolons.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Types of PSM Statements -- 2

 Assignment statements:
SET <variable> = <expression>;

̶ Example: SET b = ’Bud’;
 Statement labels: give a statement a label by

prefixing a name and a colon.

University of Toronto Scarborough

CSCD43: Database Systems Technology

IF statements

 Simplest form:
IF <condition> THEN

<statements(s)>
END IF;

 Add ELSE <statement(s)> if desired, as
IF . . . THEN . . . ELSE . . . END IF;

 Add additional cases by ELSEIF <statements(s)>:
IF … THEN … ELSEIF … ELSEIF … ELSE … END IF;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: IF

 Let’s rate bars by how many customers they
have, based on Frequents(drinker, bar).
̶ <100 customers: ‘unpopular’.
̶ 100-199 customers: ‘average’.
̶ >= 200 customers: ‘popular’.

 Function Rate(b) rates bar b.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: IF (continued)

CREATE FUNCTION Rate (IN b CHAR(20))
RETURNS CHAR(10)
DECLARE cust INTEGER;

BEGIN
SET cust = (SELECT COUNT(*) FROM Frequents

WHERE bar = b);
IF cust < 100 THEN RETURN ’unpopular’
ELSEIF cust < 200 THEN RETURN ’average’
ELSE RETURN ’popular’
END IF;

END;

Number of
customers of

bar b

Return occurs here

Nested
IF statement

University of Toronto Scarborough

CSCD43: Database Systems Technology

Loops

 Basic form:
LOOP <statements> END LOOP;

 Exit from a loop by:
LEAVE <loop name>

 The <loop name> is associated with a loop by
prepending the name and a colon to the
keyword LOOP.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Exiting a Loop

loop1: LOOP
. . .
LEAVE loop1;
. . .

END LOOP;

If this statement is executed . . .

Control winds up here

University of Toronto Scarborough

CSCD43: Database Systems Technology

Other Loop Forms

 WHILE <condition>
DO <statements>

END WHILE;
 REPEAT <statements>

UNTIL <condition>
END REPEAT;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Queries

 General SELECT-FROM-WHERE queries are
not permitted in PSM.

 There are three ways to get the effect of a
query:

1. Queries producing one value can be the expression
in an assignment.

2. Single-row SELECT . . . INTO.
3. Cursors.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Assignment/Query

 If p is a local variable and Sells(bar, beer, price)
the usual relation, we can get the price Joe
charges for Bud by:

SET p = (SELECT price FROM Sells
WHERE bar = ’Joe’’s Bar’ AND

beer = ’Bud’);

University of Toronto Scarborough

CSCD43: Database Systems Technology

SELECT . . . INTO

 An equivalent way to get the value of a query
that is guaranteed to return a single tuple is by
placing INTO <variable> after the SELECT
clause.

 Example:
SELECT price INTO p FROM Sells
WHERE bar = ’Joe’’s Bar’ AND

beer = ’Bud’;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Cursors

 A cursor is essentially a tuple-variable that
ranges over all tuples in the result of some
query.

 Declare a cursor c by:
DECLARE c CURSOR FOR <query>;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Opening and Closing Cursors

 To use cursor c, we must issue the command:
OPEN c;

̶ The query of c is evaluated, and c is set to point to
the first tuple of the result.

 When finished with c, issue command:
CLOSE c;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Fetching Tuples From a Cursor

 To get the next tuple from cursor c, issue
command:

FETCH FROM c INTO x1, x2,…,xn ;
 The x ’s are a list of variables, one for each

component of the tuples referred to by c.
 c is moved automatically to the next tuple.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Breaking Cursor Loops -- 1

 The usual way to use a cursor is to create a loop
with a FETCH statement, and do something with
each tuple fetched.

 A tricky point is how we get out of the loop when
the cursor has no more tuples to deliver.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Breaking Cursor Loops -- 2

 Each SQL operation returns a status, which is a
5-digit number.
̶ For example, 00000 = “Everything OK,” and 02000 =

“Failed to find a tuple.”
 In PSM, we can get the value of the status in a

variable called SQLSTATE.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Breaking Cursor Loops -- 3

 We may declare a condition, which is a boolean
variable that is true if and only if SQLSTATE has
a particular value.

 Example: We can declare condition NotFound to
represent 02000 by:

DECLARE NotFound CONDITION FOR
SQLSTATE ’02000’;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Breaking Cursor Loops -- 4

 The structure of a cursor loop is thus:
cursorLoop: LOOP

…
FETCH c INTO … ;
IF NotFound THEN LEAVE cursorLoop;
END IF;
…

END LOOP;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Cursor

 Let’s write a procedure that examines Sells(bar,
beer, price), and raises by $1 the price of all
beers at Joe’s Bar that are under $3.
̶ Yes, we could write this as a simple UPDATE, but the

details are instructive anyway.

University of Toronto Scarborough

CSCD43: Database Systems Technology

The Needed Declarations

CREATE PROCEDURE JoeGouge()
DECLARE theBeer CHAR(20);
DECLARE thePrice REAL;
DECLARE NotFound CONDITION FOR

SQLSTATE ’02000’;
DECLARE c CURSOR FOR

(SELECT beer, price FROM Sells
WHERE bar = ’Joe’’s Bar’);

Used to hold
beer-price pairs

when fetching
through cursor c

Returns Joe’s menu

University of Toronto Scarborough

CSCD43: Database Systems Technology

The Procedure Body

BEGIN
OPEN c;
menuLoop: LOOP

FETCH c INTO theBeer, thePrice;
IF NotFound THEN LEAVE menuLoop END IF;
IF thePrice < 3.00 THEN

UPDATE Sells SET price = thePrice+1.00
WHERE bar = ’Joe’’s Bar’ AND beer = theBeer;

END IF;
END LOOP;
CLOSE c;

END;

Check if the recent
FETCH failed to

get a tuple

If Joe charges less than $3 for
the beer, raise it’s price at

Joe’s Bar by $1.

	CSCD43: Database Systems Technology���Lecture 4
	Steps in Database Design
	Physical Design
	Storage and Indexing
	Recall Index strategies
	Recall Index strategies
	Question?
	Multi-level Index
	B+ Tree Indexes
	Example B+ Tree
	B+ Tree Equality Search
	B+ Tree Range Search
	How to create an index in SQL ?
	How to drop an index in SQL ?
	When to use an Index?
	When not to use an Index?
	Physical Design
	Transactions
	The Setting
	Example: Bad Interaction
	ACID Transactions
	Transactions in SQL
	COMMIT
	ROLLBACK
	An Example: Interacting Processes
	Sally’s Program
	Joe’s Program
	Interleaving of Statements
	Example: Strange Interleaving
	Fixing the Problem With Transactions
	Another Problem: Rollback
	Solution
	Isolation Levels
	Choosing the Isolation Level
	Serializable Transactions
	Isolation Level Is Personal Choice
	Read-Commited Transactions
	Repeatable-Read Transactions
	Example: Repeatable Read
	Read Uncommitted
	Transaction in PostgreSQL
	Transaction in PostgreSQL
	SQL/PSM/PL-SQL
	Steps in Database Design
	Stored Procedures
	Stored Procedures
	Basic PSM Form
	Parameters in PSM
	Example: Stored Procedure
	The Procedure
	Invoking Procedures
	Types of PSM statements -- 1
	Types of PSM Statements -- 2
	IF statements
	Example: IF
	Example: IF (continued)
	Loops
	Example: Exiting a Loop
	Other Loop Forms
	Queries
	Example: Assignment/Query
	SELECT . . . INTO
	Cursors
	Opening and Closing Cursors
	Fetching Tuples From a Cursor
	Breaking Cursor Loops -- 1
	Breaking Cursor Loops -- 2
	Breaking Cursor Loops -- 3
	Breaking Cursor Loops -- 4
	Example: Cursor
	The Needed Declarations
	The Procedure Body

