
University of Toronto ScarboroughUniversity of Toronto Scarborough

CSCD43: Database Systems
Technology

Lecture 5

Wael Aboulsaadat

Acknowledgment: these slides are based on Prof. Garcia-Molina & Prof. Ullman
slides accompanying the course’s textbook.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Steps in Database Design
Conceptual Design

Logical Design

Physical Design

Transactions

PL/SQL

Security Design

Data Population

Query Optimization

University of Toronto ScarboroughUniversity of Toronto Scarborough

JDBC

University of Toronto Scarborough

CSCD43: Database Systems Technology

Programs with Embedded SQL

Host language + Embedded SQL

Preprocessor

Host Language + function calls

Host language compiler

Host language program

Preprocessor

Host language compiler

Call-level
interface (CLI):
ODBC,JDBC,

ADO

University of Toronto Scarborough

CSCD43: Database Systems Technology

JDBC
 Call-level interface (CLI) for executing SQL from a

Java program
 SQL statement is constructed at run time as the

value of a Java variable (as in dynamic SQL)
 JDBC passes SQL statements to the underlying

DBMS. Can be interfaced to any DBMS that has
a JDBC driver

 Part of SQL:2003

University of Toronto Scarborough

CSCD43: Database Systems Technology

JDBC Run-Time Architecture

DBMS

application driver
manager

DB/2
driver

SQLServer
driver

Oracle
driver

DB/2
database

SQLServer
database

Oracle
database

University of Toronto Scarborough

CSCD43: Database Systems Technology

What you expect in DB API

1. Open a Connection

2. Send a statement

3. Retrieve results

4. Close a connection 1. Create a connection
Session

2. Execute statement

3. Send results

4. Close the session

Java Application

DBMS Engine

Java DB API

University of Toronto Scarborough

CSCD43: Database Systems Technology

Steps to execute queries using JDBC

1. Register Oracle Driver
DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

Or
Class.forName(“org.postgresql.Driver”);

2. Establish connection to DB server
Connection con =
DriverManager.getConnection(<url>,<username>,<password>);
<url> identifies which Driver to use, connect to which database, on
which port and what is the service name.

3. Create Statement
Statement sta = con.createStatement();

University of Toronto Scarborough

CSCD43: Database Systems Technology

Steps to execute queries using JDBC (contd..)

4. Execute Query
ResultSet query = sta.executeQuery(<Query>);

5. Display/Process Result
while(query.next()) {
//process data from tuples.
}

6. Close connection
query.close();
sta.close();
con.close();

University of Toronto Scarborough

CSCD43: Database Systems Technology

Executing a Query
import java.sql.*; -- import all classes in package java.sql

Class.forName (driver name); // static method of class Class
// loads specified driver

Connection con = DriverManager.getConnection(Url, Id, Passwd);
// Static method of class DriverManager; attempts to connect to DBMS
// If successful, creates a connection object, con, fo managing the connection

Statement stat = con.createStatement ();
// Creates a statement object stat
// Statements have executeQuery() method

University of Toronto Scarborough

CSCD43: Database Systems Technology

Executing a Query (cont’d)
String query = “SELECT T.StudId FROM Transcript T” +

“WHERE T.CrsCode = ‘cse305’ ” +
“AND T.Semester = ‘S2000’ ”;

ResultSet res = stat.executeQuery (query);
// Creates a result set object, res.
//Prepares and executes the query.
// Stores the result set produced by execution in res
// (analogous to opening a cursor).
// The query string can be constructed at run time (as above).
//The input parameters are plugged into the query when
// the string is formed (as above)

University of Toronto Scarborough

CSCD43: Database Systems Technology

String query = “SELECT T.StudId FROM Transcript T” +
“WHERE T.CrsCode = ? AND T.Semester = ?”;

PreparedStatement ps = con.prepareStatement (query);
// Prepares the statement
// Creates a prepared statement object, ps, containing the prepared statement
// Placeholders (?) mark positions of in parameters;
// special API is provided to plug the actual values in
// positions indicated by the ?’s

Preparing and Executing a Query

placeholders

University of Toronto Scarborough

CSCD43: Database Systems Technology

Preparing and Executing a Query (cont’d)
String crs_code, semester;
………
ps.setString(1, crs_code); // set value of first in parameter
ps.setString(2, semester); // set value of second in parameter

ResultSet res = ps.executeQuery ();
• Creates a result set object, res
• Executes the query
• Stores the result set produced by execution in res

while (res.next ()) { // advance the cursor
j = res.getInt (“StudId”); // fetch output int-value
…process output value…

}

University of Toronto Scarborough

CSCD43: Database Systems Technology

Result Sets and Cursors
 Three types of result sets in JDBC:
̶ Forward-only: not scrollable
̶ Scroll-insensitive: scrollable; changes made to

underlying tables after the creation of the result
set are not visible through that result set

̶ Scroll-sensitive: scrollable; updates and deletes
made to tuples in the underlying tables after the
creation of the result set are visible through the
set

University of Toronto Scarborough

CSCD43: Database Systems Technology

Result Set

 Any result set type can be declared read-only or
updatable – CONCUR_UPDATABLE (assuming
SQL query satisfies the conditions for updatable
views)

 Updatable: Current row of an updatable result set
can be changed or deleted, or a new row can be
inserted. Any such change causes changes to
the underlying database table

Statement stat = con.createStatement (
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

res.updateString (“Name”, “John”); // change the attribute “Name” of
// current row in the row buffer.

res.updateRow (); // install changes to the current row buffer
// in the underlying database table

University of Toronto Scarborough

CSCD43: Database Systems Technology

Handling Exceptions

 try/catch is the basic structure within which an
SQL statement should be embedded

 If an exception is thrown, an exception object, ex,
is created and the catch clause is executed

 The exception object has methods to print an
error message, return SQLSTATE, etc.

try {
...Java/JDBC code...

} catch (SQLException ex) {
…exception handling code...

}

University of Toronto Scarborough

CSCD43: Database Systems Technology

Transactions in JDBC
• As with ODBC, each statement gets committed

automatically in JDBC
• To turn off auto commit use

conn.setAutoCommit(false);
• To commit or abort transactions use

conn.commit() or conn.rollback()
• To turn auto commit on again, use

conn.setAutoCommit(false);

University of Toronto Scarborough

CSCD43: Database Systems Technology

JDBC Data Types

 As SQL defines its own datatypes, it is important to
understand the mapping between SQL and Java
datatypes…

SQL Java SQL Java
---------------------------------- ---
BIT boolean NUMERIC BigDecimal
BIGINT long REAL float
BINARY byte[] SMALLINT short
CHAR String TIME Time
DATE Date TIMESTAMP Timestamp
DOUBLE double TINYINT byte
FLOAT float VARBINARY byte[]
INTEGER int VARCHAR char[]

BLOB Blob REF Ref
CLOB Clob STRUCT Struct

Many of the non-
primitive types

are defined in the
java.sql pacakge.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Callable Statement

 Used for executing stored procedures
 Example
String createProcedure = “Create Procedure ShowGoodStudents” + “as

Select Name from CS4400 where Marks > 90)”;
Stmt.executeUpdate(createProcedure);

CallableStatement cs = con.prepareCall(“(call ShowGoodStudents)”);
ResultSet rs = cs.executeQuery();

University of Toronto Scarborough

CSCD43: Database Systems Technology

Callable Statement
 Passing IN parameters is done using the setXXX methods

inherited from PreparedStatement
̶ pstmt.setLong(1, 12345);
̶ pstmt.setLong(2, 345);

 If OUT parameters are used, the JDBC type of each OUT
parameter must be registered before execution
̶ cstmt.registerOutParameter(1,java.sql.Types.TINYINT);
̶ Then use getXXX methods to retrieve OUT parameter values

• byte x = cstmt.getByte(1);

University of Toronto Scarborough

CSCD43: Database Systems Technology

CallableStatement
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Connection con

= DriverManager.getConnection("jdbc:odbc:uma","kworker","kworker");

//calling a stored procedure with no input/output param
CallableStatement cs1 = con.prepareCall("{call HELLOWORLD}");
ResultSet rs1 = cs1.executeQuery();
while(rs1.next())
{

String one = rs1.getString(“Column-name");
System.out.println(one);

}

University of Toronto Scarborough

CSCD43: Database Systems Technology

CallableStatement – cont’d
CallableStatement cs2 = con.prepareCall("{call ADDITION(?,?,?)}");
cs2.setInt(1,10);
cs2.setInt(2,25);
cs2.registerOutParameter(3,java.sql.Types.INTEGER);
cs2.execute();
int res = cs2.getInt(3);
System.out.println(res);

CallableStatement cs = con.prepareCall("{call ACCOUNTLOGIN(?,?,?)}");
cs.setString(1,theuser);
cs.setString(2,password);
cs.registerOutParameter(3,Types.DATE);
cs.executeQuery();
Date lastLogin = cs.getDate(3);

University of Toronto ScarboroughUniversity of Toronto Scarborough

Views

University of Toronto Scarborough

CSCD43: Database Systems Technology

Views

 A view is a relation defined in terms of
stored tables (called base tables) and other
views.

 Two kinds:
1. Virtual = not stored in the database; just a query

for constructing the relation.
2. Materialized = actually constructed and stored.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Declaring Views

 Declare by:
CREATE [MATERIALIZED] VIEW

<name> AS <query>;

 Default is virtual.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: View Definition

 CanDrink(drinker, beer) is a view “containing”
the drinker-beer pairs such that the drinker
frequents at least one bar that serves the beer:

CREATE VIEW CanDrink AS
SELECT drinker, beer

FROM Frequents, Sells

WHERE Frequents.bar = Sells.bar;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Accessing a View

 Query a view as if it were a base table.
̶ Also: a limited ability to modify views if it makes

sense as a modification of one underlying base
table.

 Example query:
SELECT beer FROM CanDrink
WHERE drinker = ’Sally’;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Triggers on Views

 Generally, it is impossible to modify a virtual
view, because it doesn’t exist on disk.

 But an INSTEAD OF trigger lets us interpret
view modifications in a way that makes
sense.

 Example: View Synergy has (drinker, beer,
bar) triples such that the bar serves the beer,
the drinker frequents the bar and likes the
beer.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: The View

CREATE VIEW Synergy AS
SELECT Likes.drinker, Likes.beer, Sells.bar
FROM Likes, Sells, Frequents
WHERE Likes.drinker = Frequents.drinker

AND Likes.beer = Sells.beer
AND Sells.bar = Frequents.bar;

Natural join of Likes,
Sells, and Frequents

Pick one copy of
each attribute

University of Toronto Scarborough

CSCD43: Database Systems Technology

Interpreting a View Insertion

 We cannot insert into Synergy --- it is a virtual
view.

 But we can use an INSTEAD OF trigger to turn a
(drinker, beer, bar) triple into three insertions of
projected pairs, one for each of Likes, Sells, and
Frequents.
̶ Sells.price will have to be NULL.

University of Toronto Scarborough

CSCD43: Database Systems Technology

The Trigger

CREATE TRIGGER ViewTrig
INSTEAD OF INSERT ON Synergy
REFERENCING NEW ROW AS n
FOR EACH ROW
BEGIN

INSERT INTO LIKES VALUES(n.drinker, n.beer);
INSERT INTO SELLS(bar, beer) VALUES(n.bar, n.beer);
INSERT INTO FREQUENTS VALUES(n.drinker, n.bar);

END;

University of Toronto Scarborough

CSCD43: Database Systems Technology

Materialized Views

 Problem: each time a base table changes, the
materialized view may change.
̶ Cannot afford to recompute the view with each

change.
 Solution: Periodic reconstruction of the

materialized view, which is otherwise “out of
date.”

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: A Data Warehouse

 Wal-Mart stores every sale at every store in a
database.

 Overnight, the sales for the day are used to
update a data warehouse = materialized
views of the sales.

 The warehouse is used by analysts to predict
trends and move goods to where they are
selling best.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Steps in Database Design
Conceptual Design

Logical Design

Physical Design

Transactions

PL/SQL

Security Design

Data Population

Query Optimization

University of Toronto ScarboroughUniversity of Toronto Scarborough

SQL Authorization

Privileges
Grant and Revoke
Grant Diagrams

University of Toronto Scarborough

CSCD43: Database Systems Technology

Authorization

 A file system identifies certain privileges on the
objects (files) it manages.
̶ Typically read, write, execute.

 A file system identifies certain participants to
whom privileges may be granted.
̶ Typically the owner, a group, all users.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Privileges --- 1

 SQL identifies a more detailed set of privileges
on objects (relations) than the typical file system.

 Nine privileges in all, some of which can be
restricted to one column of one relation.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Privileges --- 2

 Some important privileges on a relation:
1. SELECT = right to query the relation.
2. INSERT = right to insert tuples.
 May apply to only one attribute.

3. DELETE = right to delete tuples.
4. UPDATE = right to update tuples.
 May apply to only one attribute.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Privileges

 For the statement below:
INSERT INTO Beers(name)

SELECT beer FROM Sells
WHERE NOT EXISTS

(SELECT * FROM Beers
WHERE name = beer);

 We require privileges SELECT on Sells and
Beers, and INSERT on Beers or Beers.name.

beers that do
not appear in

Beers. We add
them to Beers

with a NULL
manufacturer.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Authorization ID’s

 A user is referred to by authorization ID, typically
their name.

 There is an authorization ID PUBLIC.
̶ Granting a privilege to PUBLIC makes it available to

any authorization ID.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Granting Privileges

 You have all possible privileges on the
objects, such as relations, that you create.

 You may grant privileges to other users
(authorization ID’s), including PUBLIC.

 You may also grant privileges WITH GRANT
OPTION, which lets the grantee also grant
this privilege.

University of Toronto Scarborough

CSCD43: Database Systems Technology

The GRANT Statement

 To grant privileges, say:
GRANT <list of privileges>
ON <relation or other object>
TO <list of authorization ID’s>;

 If you want the recipient(s) to be able to pass the
privilege(s) to others add:

WITH GRANT OPTION

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: GRANT

 Suppose you are the owner of Sells. You
may say:

GRANT SELECT, UPDATE(price)
ON Sells
TO sally;

 Now Sally has the right to issue any query on
Sells and can update the price component
only.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Grant Option

 Suppose we also grant:
GRANT UPDATE ON Sells TO sally
WITH GRANT OPTION;
 Now, Sally can not only update any attribute

of Sells, but can grant to others the privilege
UPDATE ON Sells.
̶ Also, she can grant more specific privileges like

UPDATE(price) ON Sells.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Revoking Privileges

REVOKE <list of privileges>
ON <relation or other object>
FROM <list of authorization ID’s>;

 Your grant of these privileges can no longer
be used by these users to justify their use of
the privilege.
̶ But they may still have the privilege because they

obtained it independently from elsewhere.

University of Toronto Scarborough

CSCD43: Database Systems Technology

REVOKE Options

 We must append to the REVOKE
statement either:

1. CASCADE. Now, any grants made by a
revokee are also not in force, no matter how far
the privilege was passed.

2. RESTRICT. If the privilege has been passed to
others, the REVOKE fails as a warning that
something else must be done to “chase the
privilege down.”

University of Toronto Scarborough

CSCD43: Database Systems Technology

Grant Diagrams

 Nodes = user/privilege/option/isOwner?
̶ UPDATE ON R, UPDATE(a) on R, and UPDATE(b)

ON R live in different nodes.
̶ SELECT ON R and SELECT ON R WITH GRANT

OPTION live in different nodes.
 Edge X ->Y means that node X was used to

grant Y.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Notation for Nodes

 Use AP for the node representing authorization
ID A having privilege P.
̶ P * represents privilege P with grant option.
̶ P ** represents the source of the privilege P. That is,

AP ** means A is the owner of the object on which P
is a privilege.

• Note ** implies grant option.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Manipulating Edges --- 1

 When A grants P to B, We draw an edge from
AP * or AP ** to BP.
̶ Or to BP * if the grant is with grant option.

 If A grants a subprivilege Q of P (say
UPDATE(a) on R when P is UPDATE ON R)
then the edge goes to BQ or BQ *, instead.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Manipulating Edges --- 2

 Fundamental rule: user C has privilege Q as
long as there is a path from XQ ** (the origin of
privilege Q) to CQ, CQ *, or CQ**.
̶ Remember that XQ** could be CQ**.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Manipulating Edges --- 3

 If A revokes P from B with the CASCADE
option, delete the edge from AP to BP.

 If A uses RESTRICT, and there is an edge
from BP to anywhere, then reject the
revocation and make no change to the graph.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Manipulating Edges --- 4

 Having revised the edges, we must check that
each node has a path from some ** node,
representing ownership.

 Any node with no such path represents a
revoked privilege and is deleted from the
diagram.

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Grant Diagram

AP**

A owns the
object on

which P is
a privilege

BP*

A: GRANT P
TO B WITH

GRANT OPTION

CP*

B: GRANT P
TO C WITH

GRANT OPTION

CP

A: GRANT P
TO C

University of Toronto Scarborough

CSCD43: Database Systems Technology

Example: Grant Diagram

AP** BP* CP*

CP

A executes
REVOKE P FROM B CASCADE;

However, C still
has P without grant

option because of
the direct grant.

Not only does B lose
P*, but C loses P*.

Delete BP* and CP*.

Even had
C passed P
to B, both
nodes are

still cut off.

University of Toronto ScarboroughUniversity of Toronto Scarborough

SQL Injection

University of Toronto Scarborough

CSCD43: Database Systems Technology

What is a SQL Injection Attack?

 Many web applications take user input from a
form

 Often this user input is used literally in the
construction of a SQL query submitted to a
database. For example:
̶ SELECT productdata FROM table WHERE

productname = ‘user input product name’;
 A SQL injection attack involves placing SQL

statements in the user input

University of Toronto Scarborough

CSCD43: Database Systems Technology

An Example SQL Injection Attack

 This input is put directly into the SQL statement
within the Web application:
̶ $query = “SELECT prodinfo FROM prodtable WHERE prodname = ‘” .

$_POST[‘prod_search’] . “’”;
 Creates the following SQL:

̶ SELECT prodinfo FROM prodtable WHERE prodname = ‘blah‘ OR ‘x’ = ‘x’
̶ Attacker has now successfully caused the entire database to be

returned.

Blah OR ‘x’ = ‘x’

University of Toronto Scarborough

CSCD43: Database Systems Technology

A More Malicious Example
 What if the attacker had instead entered:

̶ blah‘; DROP TABLE prodinfo; --
 Results in the following SQL:

̶ SELECT prodinfo FROM prodtable WHERE prodname = ‘blah’; DROP TABLE
prodinfo; --’

̶ Note how comment (--) consumes the final quote

 Causes the entire database to be deleted
̶ Depends on knowledge of table name
̶ This is sometimes exposed to the user in debug code called during a

database error
̶ Use non-obvious table names, and never expose them to user

 Usually data destruction is not your worst fear, as there is low
economic motivation

University of Toronto Scarborough

CSCD43: Database Systems Technology

Other injection possibilities

 Using SQL injections, attackers can:
̶ Add new data to the database

• Could be embarrassing to find yourself selling
politically incorrect items on an eCommerce site

• Perform an INSERT in the injected SQL
̶ Modify data currently in the database

• Could be very costly to have an expensive item
suddenly be deeply ‘discounted’

• Perform an UPDATE in the injected SQL
̶ Often can gain access to other user’s system

capabilities by obtaining their password

University of Toronto Scarborough

CSCD43: Database Systems Technology

Defenses
 Check syntax of input for validity

̶ Many classes of input have fixed languages
• Email addresses, dates, part numbers, etc.
• Verify that the input is a valid string in the language
• Sometime languages allow problematic characters

(e.g., ‘*’ in email addresses); may decide to not allow
these

• If you can exclude quotes and semicolons that’s good
̶ Not always possible: consider the name Bill O’Reilly

• Want to allow the use of single quotes in names
 Have length limits on input

̶ Many SQL injection attacks depend on entering long
strings

University of Toronto Scarborough

CSCD43: Database Systems Technology

Even More Defenses

 Scan query string for undesirable word
combinations that indicate SQL statements
̶ INSERT, DROP, etc.
̶ If you see these, can check against SQL syntax to

see if they represent a statement or valid user input
 Limit database permissions and segregate users

̶ If you’re only reading the database, connect to
database as a user that only has read permissions

̶ Never connect as a database administrator in your
web application

University of Toronto Scarborough

CSCD43: Database Systems Technology

More Defenses
 Configure database error reporting

̶ Default error reporting often gives away information that is
valuable for attackers (table name, field name, etc.)

̶ Configure so that this information is never exposed to a user

 If possible, use bound variables
̶ Some libraries allow you to bind inputs to variables inside a SQL

statement
̶ PERL example (from http://www.unixwiz.net/techtips/sql-

injection.html)
$sth = $dbh->prepare("SELECT email, userid FROM members WHERE

email = ?;");
$sth->execute($email);

	CSCD43: Database Systems Technology���Lecture 5
	Steps in Database Design
	JDBC
	Programs with Embedded SQL
	JDBC
	JDBC Run-Time Architecture
	What you expect in DB API
	Steps to execute queries using JDBC
	Steps to execute queries using JDBC (contd..)
	Executing a Query
	Executing a Query (cont’d)
	Preparing and Executing a Query
	Preparing and Executing a Query (cont’d)
	Result Sets and Cursors
	Result Set
	Handling Exceptions
	Transactions in JDBC
	JDBC Data Types
	Callable Statement
	Callable Statement
	CallableStatement
	CallableStatement – cont’d
	Views
	Views
	Declaring Views
	Example: View Definition
	Example: Accessing a View
	Triggers on Views
	Example: The View
	Interpreting a View Insertion
	The Trigger
	Materialized Views
	Example: A Data Warehouse
	Steps in Database Design
	SQL Authorization
	Authorization
	Privileges --- 1
	Privileges --- 2
	Example: Privileges
	Authorization ID’s
	Granting Privileges
	The GRANT Statement
	Example: GRANT
	Example: Grant Option
	Revoking Privileges
	REVOKE Options
	Grant Diagrams
	Notation for Nodes
	Manipulating Edges --- 1
	Manipulating Edges --- 2
	Manipulating Edges --- 3
	Manipulating Edges --- 4
	Example: Grant Diagram
	Example: Grant Diagram
	SQL Injection
	What is a SQL Injection Attack?
	An Example SQL Injection Attack
	A More Malicious Example
	Other injection possibilities
	Defenses
	Even More Defenses
	More Defenses

