
1

University of Toronto
CSC324 –Programming Languages, winter 2011

Assignment # 3B

Details
- Topics: Grammar
- Weight: 15%
- Due Date: this assignment is due on April 7th

- This assignment
, 2011 @ 11:59pm

must be done in a team of two members (if you can’t find a team member, post a
message to the discussion board asking for one).

Submission
Place all your files in a folder named after your UTORID and submit that folder zipped through the
portal (if your UTORID is abcd, the file should be named abcd.zip). A link for submission of 3B is
provided in the assignments folder in the portal (http://portal.utoronto.ca).

Resources

- ANTLRWorks http://www.antlr.org/download.html
 http://www.antlr.org/works/help/index.html

- Java Development Kit (SE)

 http://www.oracle.com/technetwork/java/javase/downloads/index.html

- Blackboard Discussion board http://portal.utoronto.ca

Description
This assignment is to get you trained in writing a valid grammar for a programming language. You are
given an informal specification of a language called uot, as well as sample programs. Your task is to
write a grammar for that language using ANTLRWorks. ANTLRWorks is a visual grammar builder,
verifier and also parser generator. It will allow you to automatically generate a uot parser from a valid
grammar. After you generate the parser, you are required to test the parser against the given sample
code. Note that being able to parse only the files we provide you will not be enough to get full marks,
your parsers should be able to parse any string in the uot language.

What to submit?

- uot.g grammar file
- README (

team members names, student ids and UTORIDs)

Language Description
• A uot file consists of two parts: use statements and prototype declarations
• A use statement is either of the form “using <directory1>/<directory2>/ … <directoryn>;” or

“using <directory1>/<directory2>/ … <directoryn
• A prototype declaration starts with a possibly empty list of modifiers, continues with the

keyword “prototype”, a prototype name, and ends with a “prototype body”

>/*;”

http://portal.utoronto.ca/�
http://www.antlr.org/download.html�
http://www.antlr.org/works/help/index.html�
http://www.oracle.com/technetwork/java/javase/downloads/index.html�
http://portal.utoronto.ca/�

2

• A modifier is one of the following words: visible, shielded, onlyone, constant, hidden.
• A prototype body is enclosed between the keywords “begin” and “end”. Between those two

keywords, there are method declarations and field declarations.
• A method declaration starts with modifiers, and continues with a yield type, a list of formals, and

finally a list of statements enclosed between “begin” and “end” keywords.
• A field declaration starts with modifiers, continues with a data type, a field name, and an

optional initial value.
• A data type is one of the following: integer, bool, char, double.
• A yield type is either “nothing” or a data type.
• A statement is one of the following: an assignment, a yield statement, a variable declaration, an

expression, an when statement, an aslong statement.
• An assignment has a variable name at the left hand side, and an expression at the right hand side.
• A yield statement consists of the keyword “yield” followed by an expression
• A variable declaration is a variable name preceded by a data type, and followed by an optional

initial value assignment.
• An expression can consist of variable names, constants, function calls with operators in between

them.
• A constant is either a integer value, a double value, a quoted string value, keyword “true” or

keyword “false”.
• A function call is a function name, followed by a possibly empty list of arguments.
• An operator can be a binary operator or a unary operator.
• An if statement starts with the keyword “when” followed by an expression and a statement list

enclosed by the keywords “begin” and “end”. The if statement may also have “orwhen”
statements and “otherwise statement”s before the “end” keyword.

• An aslong statement is similar to an if statement, however doesn't allow an “else” statement
inside.

• The statements except when statements and aslong statements end with a semicolon.
• User defined names (prototype names, variable names etc.) may include numbers and integers.

However they cannot start with a number, or cannot be any of the keywords.
• The operators have different precedence from each other. Following tables summarizes them:

Priority Operators Operation
1 + - Unary plus, unary minus
2 * Multiplication
3 + - Addition, subtraction
4 lessthan lessorequal greaterorequal

greaterthan
Less than, less than or equal
to, greater then, greater than

or equal to
5 is isnot Equal to, not equal to
6 and Boolean and
7 or Boolean or

You may check the sample code for the finer details.

3

How to compile/run the Parser?
1. Install Java Development Kit (see resources section above)
2. Open console window (in Windows; Start -> Run)
3. Go to the directory (folder) where the generated parser source file exists
4. Copy the <grammar-name>Lexer.java and <grammar-name>Parser.java files to a directory

with the same name as the package name your declared in your ANTLR grammar file (i.e.
your @header {package <package-name>;} @lexer::header {package
<package-name>;} in the beginning of your grammar file)

5. Place the MyParser.java file we provide to you one level above the directory you have just
created.

6. To compile the parser (assuming parser file is called uot.java)
 javac MyParser.java

7. To run the parser (assuming parser file is called uot.java, compilation will result in uot.class
generated – do not include the .class when running the program)

 java MyParser sample.uot

4

MyParser.java

import java.io.*;
import org.antlr.runtime.*;
import org.antlr.runtime.tree.*;
import <package-name>.*;

public class MyParser
{

 public static void main(String[] args) throws IOException
 {

 <grammar-name>Lexer lexer = new <grammar-name>Lexer(new
ANTLRFileStream(args[0]));

 CommonTokenStream tokens = new CommonTokenStream(lexer);

 <grammar-name>Parser parser = new <grammar-name>Parser(tokens);

 try {
 parser.prog();
 } catch(Exception e) { System.out.println("Error!"); }

 if (parser.getNumberOfSyntaxErrors() == 0)
 {
 System.out.println("Parsing successful");
 }
 else
 {
 System.out.println("Parsing unsuccessful");
 }

 }

}

Note: Be sure to replace <package-name> and <grammar-name> with your own package and grammar
names.

5

Sample Code

Valid File #1

using x/y/*;

visible prototype foobar
begin

 visible onlyone nothing start()
 begin
 x <- 3;

 aslong(true)
 begin
 y <- +5;

 aslong(x and y or func() greaterthan 5)
 begin
 z <- 6 * 3.E-0;
 end
 end
 end

 shielded onlyone constant integer y <- 4;

end

6

Valid File #2

using uot/utilities/*;
using uot;

visible prototype Prototype1
begin
 visible onlyone nothing start()
 begin
 x <- x - 5;
 end
end

hidden prototype Prototype2
begin

hidden onlyone hidden constant integer func()
begin

 someValue <- -5;

 x1y1 <- someFunction();
 end

 visible double func2()
 begin
 yield 7 greaterorequal 5;

 double x <- 3.0;

 x <- x + 7.56;
 end
end

7

Valid File #3

using just/header;
using but/no/other/definitions/*;

8

Valid File #4

shielded constant hidden visible prototype something
begin

 constant shielded visible char something <- 3.33E-33;

 nothing something(integer x, integer x)
 begin
 yield other3things;
 end

 visible onlyone nothing something(integer x, double y, char z,
bool t)
 begin
 x <- 3;

 when ((x is 3) and (y isnot 4))
 begin
 y <- 5;

 orwhen ((x is 3) and (y isnot 4))

 z <- 6;

 bool y <- 3;

 orwhen (((x is (3 and y)) isnot 4))

 yield (((x is 3) and y) isnot 4);

 otherwise

 when (9.99E+99 lessorequal false)
 begin
 (x + y) * (z + t) and (-6.66E66);

 end
 end

 yield x;
 end

 constant onlyone constant integer y <- 4;
end

9

Valid File #5

using use/statement/with/a/directory;
using use/statement/with/everything/inside;

constant onlyone prototype MyFirstPrototype
begin

 onlyone bool true1OrFalse0 <- 0.5;

 constant bool areTheseTrue(bool x, bool y)
 begin
 yield askOtherFunctionWhetherTheseAreTrue(y, x);
 end

 constant nothing duplicateVariables()
 begin
 when (x is x)
 begin
 integer are;

 integer are;

 double allowed;

 double allowed;

 char noone;

 char noone;

 bool cares;

 bool cares;

 end
 end
end

