
Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

Today
• Administrivia

• History of Programming Languages!

• Programming Languages Paradigms

Administrivia
• Class web site:

– http://portal.utoronto.ca/
– Course information sheet, grading, important dates, remark requests,

discussion board, assignment submission, announcements,…

• Three programming assignments (50%)

• Midterm on March 2nd (15%) and final worth 35%

Course Contents

• Programming Language Varieties
- Logic Programming (Prolog)
- Imperative Programming (Javascript)
- Functional Programming (Scheme and ML)

• Programming Language Design
- Formal specification
- Issues in designing a language

Introduction && PL History

PL History: programming then…

PL History: Von Neumann architecture

• How to specify a program?

ALU

Registers

MemoryCentral Processing Unit (CPU)

System Bus

AX
BX
CX
DX

PL History: assembly language
• Assembly language consist of a set of instructions that are in one-

to-one corresponds with machine language

• Instructions:
– mov
– add
– Sub
– Mul
– int

Assembler
Assembly Language
(symbolic instructions)

Machine language
(binary instructions)

ALU

Registers
RAMCPU

System Bus

AX
BX
CX
DX

PL History: assembly language
• Example 1:

– Adding 3 numbers (-3,-4 & 10)
and multiply result by 6

MOV AX, -3
MOV BX, -4
ADD AX, BX
MOV BX, 10
ADD AX,BX
MUL AX, 6

ALU

Registers
RAMCPU

System Bus

AX
BX
CX
DX

PL History: assembly language

• Example 2:
– Displaying Hello World screen

MOV AH,02H
MOV DX,OFFSET "HELLO$"
INT 21H
MOV AH,02H
MOV DX,OFFSET "WORLD$"
INT 21H

ALU

Registers
RAMCPU

System Bus

AX
BX
CX
DX

Screen buffer

PL History: assembly language

• What’s the problem?
– Hard to Write (tedious, very detailed)
– Hard to Read
– Hard to Maintain (error-prone)
– Not Portable (machine-specific)

PL History: what is a PL?

"a language intended for use by a person to express a process by
which a computer can solve a problem"

-- Hope and Jipping

"a set of conventions for communicating an algorithm"
-- E. Horowitz

"the art of programming is the art of organizing complexity"
-- E. Dijkstra, 1972

“The main idea is to treat a program as a piece of
literature, addressed to human beings rather than
to a computer.”

Donald Knuth
http://www-cs-faculty.stanford.edu/~knuth/lp.html

PL History: what is a PL?

PL History: PLs as toolsets

Other languagesC

• Carpentry view:
If all you have is a
hammer, then
everything looks like a
nail!

Digression: “A hammer is more than just a hammer. It's a personal tool that you get
used to and you form a loyalty with. It becomes an extension of yourself."

http://www.hammernet.com/romance.htm

PL History: language map

PL History: why are there so many PLs?

• We've learned better ways of doing things over time

• Socio-economic factors: proprietary interests, commercial
advantage

• Orientation toward special purposes

• Orientation toward special hardware

• Different ideas about what is pleasant to use

PL History: successful/popular languages - why?
• Easy to learn

– BASIC, Pascal, LOGO

• Easy to express things; Easy use once fluent; ‘Powerful’
– C, Perl

• Easy to implement
– Basic

• Possible to compile to very good (fast/small) code
– Fortran

• Backing of a powerful sponsor
– Ada, visual basic

• Wide dissemination at minimal cost
– Pascal, java

PL Paradigms

ALU

Registers
RAMCPU

System Bus

AX
BX
CX
DX

PL Paradigms: imperative

• Underlying notion of an abstract machine
– Von Neumann architecture

– Store (memory)
– Accumulator (ALU)
– Load/store into memory

– Key operation: assignment

PL Paradigms: imperative examples

SUM = 0
DO 11 K=1,N
SUM = SUM + 2 * K

11 CONTINUE

sum = 0;
for (k=1; k <= n; ++k)

sum += 2*k;

sum := 0;
for k:= 1 to n do

sum := sum + 2 * k;

Fortran

C

Pascal

Sum up twice each
number from 1 to N.

Compilation vs. Interpretation
• Compilation

– Translation of a program written in a high-level PL into a form that is
executable on the machine (done by compiler)

• Interpretation
– A program is translated and executed one statement at a time (done by

interpreter).

interpreter
compiler

Line
Processor

Output

PL Paradigms: imperative vs. assembly

Try this: gcc -O2 -S -c foo.c

int main() {
int nIndex,nSum;
for(nIndex=0; nIndex<10;nIndex++)

nSum =+ 2 * nIndex;
}

.file "foo.c"
.text
.p2align 4,,15

.globl main
.type main, @function

main: push BP
mov $9, AX
mov SP, BP
sub $8, SP
and $-16, SP
.p2align 4,,15

.L6: dec AX
jns .L6
mov BP, SP
pop BP
ret
.size main, .-main
.ident "GCC: (GNU) 3.3.1"

01010101010001
10101010101111
10101001010101
10010101001000
00000001101111
00000000000000
11111111100001

PL Paradigms: object oriented

• Organizes a program to be operations on abstract representations
of the data
– Objects with data abstraction and information hiding

– Object implementation is hidden from user
– Actions performed on objects (messages)
– Key operation: message passing

PL Paradigms: object oriented example

PL Paradigms: functional

• Process of problem solution expressed as a sequence of operations
on the data
– (Pure) value binding through parameter passing
– No store accessible through names
– No iteration
– Key operation: function application (with recursion)

PL Paradigms: functional language

PL Paradigms: logic

• Program is a formal description of characteristics required of a
problem solution
– Programs tell what should be not how to make it so
– Solutions through a reasoning process called theorem proving

PL Paradigms: logic language example

PL Paradigms : visual languages

PL Paradigms : visual languages

	Slide Number 1
	Today
	Administrivia
	Slide Number 4
	Slide Number 5
	PL History: programming then…
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30

