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Today
• Administrivia

• History of Programming Languages!

• Programming Languages Paradigms



Administrivia
• Class web site:

– http://portal.utoronto.ca/
– Course information sheet, grading, important dates, remark requests, 

discussion board, assignment submission, announcements,…

• Three programming assignments (50%)

• Midterm on March 2nd (15%) and final worth 35%



Course Contents 

• Programming Language Varieties 
- Logic Programming (Prolog)
- Imperative Programming (Javascript)
- Functional Programming (Scheme and ML)

• Programming Language Design
- Formal specification
- Issues in designing a language



Introduction && PL History



PL History: programming then…



PL History: Von Neumann architecture

• How to specify a program?

ALU

Registers

MemoryCentral Processing Unit (CPU)

System Bus

AX
BX
CX
DX



PL History: assembly language
• Assembly language consist of a set of instructions that are in one-

to-one corresponds with machine language

• Instructions:
– mov 
– add
– Sub
– Mul
– int 

Assembler
Assembly Language
(symbolic instructions)

Machine language
(binary instructions)

ALU

Registers
RAMCPU

System Bus

AX
BX
CX
DX



PL History: assembly language
• Example 1:

– Adding 3 numbers (-3,-4 & 10)
and multiply result by 6

MOV  AX, -3
MOV  BX, -4
ADD  AX, BX
MOV  BX, 10
ADD  AX,BX
MUL  AX, 6

ALU

Registers
RAMCPU

System Bus

AX
BX
CX
DX



PL History: assembly language

• Example 2:
– Displaying Hello World screen

MOV AH,02H
MOV DX,OFFSET "HELLO$"
INT 21H
MOV AH,02H
MOV DX,OFFSET "WORLD$"
INT 21H 

ALU

Registers
RAMCPU

System Bus

AX
BX
CX
DX

Screen buffer



PL History: assembly language

• What’s the problem?
– Hard to Write (tedious, very detailed)
– Hard to Read
– Hard to Maintain (error-prone)
– Not Portable (machine-specific)



PL History: what is a PL?

"a language intended for use by a person to express a process by
which a computer can solve a problem"

-- Hope and Jipping

"a set of conventions for communicating an algorithm"
-- E. Horowitz

"the art of programming is the art of organizing complexity"
-- E. Dijkstra, 1972



“The main idea is to treat a program as a piece of 
literature, addressed to human beings rather than 
to a computer.”

Donald Knuth
http://www-cs-faculty.stanford.edu/~knuth/lp.html

PL History: what is a PL?



PL History: PLs as toolsets

Other languagesC

• Carpentry view:
If all you have is a 
hammer, then 
everything looks like a 
nail!

Digression: “A hammer is more than just a hammer. It's a personal tool that you get 
used to and you form a loyalty with. It becomes an extension of yourself."

http://www.hammernet.com/romance.htm



PL History: language map



PL History: why are there so many PLs?

• We've learned better ways of doing things over time

• Socio-economic factors: proprietary interests, commercial 
advantage

• Orientation toward special purposes

• Orientation toward special hardware

• Different ideas about what is pleasant to use



PL History: successful/popular languages - why?
• Easy to learn

– BASIC, Pascal, LOGO

• Easy to express things; Easy use once fluent; ‘Powerful’
– C, Perl

• Easy to implement
– Basic

• Possible to compile to very good (fast/small) code
– Fortran

• Backing of a powerful sponsor
– Ada, visual basic

• Wide dissemination at minimal cost
– Pascal, java



PL Paradigms



ALU

Registers
RAMCPU

System Bus

AX
BX
CX
DX

PL Paradigms: imperative

• Underlying notion of an abstract machine
– Von Neumann architecture

– Store (memory)
– Accumulator (ALU)
– Load/store into memory

– Key operation: assignment



PL Paradigms: imperative examples

SUM = 0
DO 11 K=1,N
SUM = SUM + 2 * K

11 CONTINUE

sum = 0;
for (k=1; k <= n; ++k)

sum += 2*k;

sum := 0;
for k:= 1 to n do

sum := sum + 2 * k;

Fortran

C

Pascal

Sum up twice each 
number from 1 to N.



Compilation vs. Interpretation
• Compilation

– Translation of a program written in a high-level PL into a form that is 
executable on the machine (done by compiler)

• Interpretation
– A program is translated and executed one statement at a time (done by 

interpreter).

interpreter
compiler

Line 
Processor

Output



PL Paradigms: imperative vs. assembly

Try this: gcc -O2 -S -c foo.c

int main() {
int nIndex,nSum;
for( nIndex=0; nIndex<10;nIndex++)

nSum =+ 2 * nIndex;
}

.file   "foo.c"
.text
.p2align 4,,15

.globl main
.type   main, @function

main: push   BP
mov    $9, AX
mov    SP, BP
sub    $8, SP
and    $-16, SP
.p2align 4,,15

.L6: dec    AX
jns     .L6
mov    BP, SP
pop    BP
ret
.size   main, .-main
.ident  "GCC: (GNU) 3.3.1"

01010101010001
10101010101111
10101001010101
10010101001000
00000001101111
00000000000000
11111111100001



PL Paradigms: object oriented

• Organizes a program to be operations on abstract representations 
of the data
– Objects with data abstraction and information hiding     

– Object implementation is hidden from user
– Actions performed on objects (messages)
– Key operation: message passing



PL Paradigms: object oriented example



PL Paradigms: functional

• Process of problem solution expressed as a sequence of operations 
on the data
– (Pure) value binding through parameter passing
– No store accessible through names
– No iteration
– Key operation: function application (with recursion)



PL Paradigms: functional language



PL Paradigms: logic

• Program is a formal description of characteristics required of a 
problem solution
– Programs tell what should be not how to make it so
– Solutions through a reasoning process called theorem proving



PL Paradigms: logic language example



PL Paradigms : visual languages



PL Paradigms : visual languages
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