
University of Toronto

Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 10

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Functions
• The general form of a Scheme function is

(define (<name> <formal parameters>) (<body>))

• Examples:
– (define (square x)

(* x x))

– (define (sum-of-squares x y)
(+ (square x) (square y)))

– (define (circle-area rad)
(* 3.14 (square rad)))

2

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Functions
• Scheme functions are first-class objects:

– Can be created dynamically
– Can be stored in data structures,
– Can be returned as results of expressions or procedure.

This means that a scheme program can evolve its behavior as it runs!

3

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Pure Functions
• A pure function is one that simply uses its input arguments to

compute a return value, without performing any side-effects….?
– Side-effects are changes to the system’s computational state that could

affect future calls to itself or other functions.

• In a language that only uses pure functions, any function call with
instantiated arguments, e.g. (f 5 10), ALWAYS returns the same
value and hence means the same thing in the context of a particular
program.

• The absence of side effects makes it much easier to formally analyze
the behavior of a system, since:
– We can reason about the system in terms of independent function calls,

without having to worry about the (side) effects of these calls on future
calls.

– We can simplify the code accordingly.
• E.g. (+ (f 5 10) (f 5 10)) simplifies to (* 2 (f 5 10)) for any numeric

function f

4

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Pure Functions – cont’d
• Referential Transparency: syntactically identical expressions mean

the same thing, (i.e. return the same result when evaluated)
regardless of WHERE they appear in a program.

• Manifest Interface Principle (of Programming Languages): All
interfaces should be apparent (manifest) in the syntax.

• When all functions are pure, referential transparency and the
manifest interface principle are upheld, and thus:
– Programs are much easier to formally analyze
– Programs are much easier to DEBUG!!!

• You can understand programs by just looking at the static source code. You
need not think about the underlying computational states and how they are
affected by program dynamics.

What you see is what you get!

5

University of Toronto

CSC324: Principles of Programming Languages

Scheme: To assign is evil…
• When an assignment statement is applied to variables (i.e. memory

locations) that
a) will be maintained AFTER the function call is completed,
b) will be used for their values during later function calls (to the same or
other functions),

It violates referential transparency and destroys one’s ability to
statically analyze source code (both formally or intuitively).

• Example:
(define g 10) ;; define a global variable, g.
(define (f a) ;; define function f, with one argument, a.

(set! g (* g g)) ;; Scheme’s assignment operator, meaning g = g*g
(+ a g))

]=> (f 7)
107
]=> (f 7)
10007 ;; BADDD

6

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Predicate Functions
• Function that return #t (true) or #f (false)

– Some scheme interpreters use empty list () to indicate #f

• Predefined functions:
– (= …) ; comparison for numbers
– (> …) ; also (< ..)
– (and …) ; also (or …) (not….)
– (negative? …)
– (number? …) ;
– (symbol? …) ;
– (zero? …) ;
– (string? …) ;
– (boolean? …) ;
– (list? …) ;
– (null? …) ;
– (char? …) ;

7

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Predicate Functions cont’d
• eqv? obj1 obj2 (eq?....)

– returns #t if obj1 and obj2 should normally be regarded as same

– returns #t if
obj1 and obj2 are both numbers, are numerically equal

(eqv? 2 2)

obj1 and obj2 are both characters and are the same character according
to the char? procedure

(eqv? 'a 'a)

both obj1 and obj2 are the empty list.
(eqv? '() '())

obj1 and obj2 are pairs, vectors, or strings that denote the same
locations in memory

(eqv? (cons 1 2) (cons 1 2)) ==> #f
8

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Predicate Functions cont’d
• equal? obj1 obj2

– Equal? recursively compares the contents of pairs, vectors, and
strings, applying eqv? on other objects such as numbers and symbols.

– A rule of thumb is that objects are generally equal? if they print the
same.

– Equal? may fail to terminate if its arguments are circular data
structures.

(equal? 'a 'a) ==> #t
(equal? '(a) '(a)) ==> #t
(equal? '(a (b) c) '(a (b) c)) ==> #t
(equal? "abc" "abc") ==> #t
(equal? 2 2) ==> #t

9

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Let

• Allows the definition of local variable bindings.

• The general form of a let expression is:
(let ((<var1> <exp1>)

(<var2> <exp2>)
……
(<varn> <expn>))
<body>)

The expressions <expi> are all evaluated, the <body> is evaluated with each
<vari>in <body> bound to the value obtained from evaluating each <expi>

10

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Let

• Allows the definition of local variable bindings.

• Example: simple quadratic solver
ax2 + bx + c = 0 , x = (-b a sqrt(b2 – 4ac)) / 2a

(define (quadratic-solutions a b c)
(display (/ (+ (- 0 b) sqrt(-(square b) (* 4 a c)))) (* 2 a)))
(display (/ (- (- 0 b) sqrt(-(square b) (* 4 a c)))) (* 2 a))))

(define (quadratic-solutions a b c)
(let ((root-part (sqrt(- (square b) (* 4 a c)))))
(display (/ (+ (- 0 b) root-part) (* 2 a)))
(display (/ (- (- 0 b) root-part) (* 2 a)))))

11

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Let, Let* & Scope
• Let vs. Let*

– Each initial value clause is in the scope of the previous variable in the
let*.

– From the nesting of the boxes, we can see that bindings become
visible one at a time, so that the value of a binding can be used in
computing the initial value of the next binding.

12

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Selection Statements
• A Conditional expression are of the form:

(cond (<p1> <e1>)
(<p2> <e2>)
(<pm>)
(else <en>))

– cond is a built in primitive

– pi is a predicate (truth function) that evaluates to either #t or #f

– Each predicate expression is evaluated in the order it appears. As soon as
one is found to be true, the corresponding expression (ei) is evaluated and
returned as the result of the cond expression.

– cond is like nested if then else statements

13

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Selection Statements

• if Expression:
– Can be used when there are a maximum of 2 cases

(if <predicate> <consequent> <alternative>)
(if <predicate> <consequent>)

– Example:
• (if (< x 0)

(- x)
x)

• (define (zerocheck? x)
(if (= x 0)

#t
#f))

14

University of Toronto

CSC324: Principles of Programming Languages

Scheme: higher order func - map
• A higher order function used to apply another function to every

element of a list:
(map <func> <arg-list>)

– Arguments: a function and arguments lists
– <func> must be a function taking as many arguments as there are in <arg-

list> and returning a single value

• Examples:
]=> (map + '(1 2 3) '(4 5 6))
(5 7 9)

]=>(map abs '(-1 2 -3 -4))
(1 2 3 4)

15

University of Toronto

CSC324: Principles of Programming Languages

Scheme: I/O
• Input/output

– (read …) ;reads and returns an expression
– (read-char …) ;reads and returns a character
– (peek-char …) ; returns next available character w/o updating
– (char-ready? …) ; returns #t if char has been entered
– (write-char …) ; outputs a single character
– (write OBJECT …) ; outputs the object (strings are in quotes,.)
– (display OBJECT…) ; outputs the object in a more readable form
– (newline) ; outputs end-of-line

• Example:
> (display “hello world”)
> (define r (read))
> (display r)

16

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 1
Write a function member? which takes a list and an element and returns true if
the a element is a member of the list.

(define (member? x list)
(if (null? list)

#f
(if (equal? x (car list))

#t
(member? x (cdr list)))))

17

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 2
Write a function append which takes 2 lists and append one to the other

(define (append list1 list2)
(if (null? list1)

list2
(cons (car list1) (append (cdr list1) list2))))

18

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 3
Write a function dup? which returns true if there are duplicate in a passed list.
Assume function (member? x L) is available and returns #t if and only if x is a
member of list L.

(define (dup? lst)
(cond ((null? lst)

#f)
((member?

(car lst) (cdr lst)) #t)
(else

(dup? (cdr lst)))

19

	Slide Number 1
	Scheme: Functions
	Scheme: Functions
	Scheme: Pure Functions
	Scheme: Pure Functions – cont’d
	Scheme: To assign is evil…
	Scheme: Predicate Functions
	Scheme: Predicate Functions cont’d
	Scheme: Predicate Functions cont’d
	Scheme: Let
	Scheme: Let
	Scheme: Let, Let* & Scope
	Scheme: Selection Statements
	Scheme: Selection Statements
	Scheme: higher order func - map
	Scheme: I/O
	Scheme Practice 1
	Scheme Practice 2
	Scheme Practice 3

