
University of Toronto

Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 11

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 4
Write a Scheme function rm-dupl that is called as (rm-dupl L). L is a list of
atomic values. rm-dupl removes duplicate values in L, returning a list in which
each value only appears once (the order of values is unimportant). You can use
member? For example:

]=> (rm-dupl '(1 2 3 4))
(1 2 3 4)
]=> (rm-dupl '(1 1 1 1))
(1)
]=> (rm-dupl '(a b c b c a))
(b c a)

(define (remove-duplicates lst)
(cond

((null? lst)
‘())

((member? (car lst) (cdr lst))
(remove-duplicates (cdr lst)))

(else
(cons (car lst) (remove-duplicates (cdr lst))))))

2

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 4 - trace
(define (remove-duplicates lst)

(cond
((null? lst)

‘())
((member? (car lst) (cdr lst))

(remove-duplicates (cdr lst)))
(else

(cons (car lst) (remove-duplicates (cdr lst))))))

]=> (remove-duplicates ‘(b b c b))
(remove-duplicates ‘(b c b))

(remove-duplicates ‘(c b))
(cons c (remove-duplicates(b))

(c b)
(c b)

(c b)

3

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 4 - trace
(define (remove-duplicates lst)

(cond
((null? lst)

‘())
((member? (car lst) (cdr lst))

(remove-duplicates (cdr lst)))
(else

(cons (car lst) (remove-duplicates (cdr lst))))))

]=> (remove-duplicates ‘(b b c b))
(remove-duplicates ‘(b c b))

(remove-duplicates ‘(c b))
(cons c (remove-duplicates(b))

(c b)
(c b)

(c b)

4

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 4 - trace
(define (remove-duplicates lst)

(cond
((null? lst)

‘())
((member? (car lst) (cdr lst))

(remove-duplicates (cdr lst)))
(else

(cons (car lst) (remove-duplicates (cdr lst))))))

]=> (remove-duplicates ‘(b b c b))
(remove-duplicates ‘(b c b))

(remove-duplicates ‘(c b))
(cons c (remove-duplicates(b))

(c b)
(c b)

(c b)

5

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 4 - trace
(define (remove-duplicates lst)

(cond
((null? lst)

‘())
((member? (car lst) (cdr lst))

(remove-duplicates (cdr lst)))
(else

(cons (car lst) (remove-duplicates (cdr lst))))))

]=> (remove-duplicates ‘(b b c b))
(remove-duplicates ‘(b c b))

(remove-duplicates ‘(c b))
(cons c (remove-duplicates(b))

(c b)
(c b)

(c b)

6

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 4 - trace
(define (remove-duplicates lst)

(cond
((null? lst)

‘())
((member? (car lst) (cdr lst))

(remove-duplicates (cdr lst)))
(else

(cons (car lst) (remove-duplicates (cdr lst))))))

]=> (remove-duplicates ‘(b b c b))
(remove-duplicates ‘(b c b))

(remove-duplicates ‘(c b))
(cons c (remove-duplicates(b))

(c b)
(c b)

(c b)

7

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 4 - trace
(define (remove-duplicates lst)

(cond
((null? lst)

‘())
((member? (car lst) (cdr lst))

(remove-duplicates (cdr lst)))
(else

(cons (car lst) (remove-duplicates (cdr lst))))))

]=> (remove-duplicates ‘(b b c b))
(remove-duplicates ‘(b c b))

(remove-duplicates ‘(c b))
(cons c (remove-duplicates(b))

(cons b (remove-duplicates(‘()))

8

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 4 - trace
(define (remove-duplicates lst)

(cond
((null? lst)

‘())
((member? (car lst) (cdr lst))

(remove-duplicates (cdr lst)))
(else

(cons (car lst) (remove-duplicates (cdr lst))))))

]=> (remove-duplicates ‘(b b c b))
(remove-duplicates ‘(b c b))

(remove-duplicates ‘(c b))
(cons c (remove-duplicates(b))

(cons b (remove-duplicates(‘()))

9

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 4 - trace
(define (remove-duplicates lst)

(cond
((null? lst)

‘())
((member? (car lst) (cdr lst))

(remove-duplicates (cdr lst)))
(else

(cons (car lst) (remove-duplicates (cdr lst))))))

]=> (remove-duplicates ‘(b b c b))
(remove-duplicates ‘(b c b))

(remove-duplicates ‘(c b))
(cons c (remove-duplicates(b))

(cons b (‘()))

10

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 4 - trace
(define (remove-duplicates lst)

(cond
((null? lst)

‘())
((member? (car lst) (cdr lst))

(remove-duplicates (cdr lst)))
(else

(cons (car lst) (remove-duplicates (cdr lst))))))

]=> (remove-duplicates ‘(b b c b))
(remove-duplicates ‘(b c b))

(remove-duplicates ‘(c b))
(cons c (remove-duplicates(b))

(cons b (‘()))
(cons c ‘(b))

(c b)
(c b)

(c b)

11

University of Toronto

CSC324: Principles of Programming Languages

Scheme Practice 4 - trace
(define (remove-duplicates lst)

(cond
((null? lst)

‘())
((member? (car lst) (cdr lst))

(remove-duplicates (cdr lst)))
(else

(cons (car lst) (remove-duplicates (cdr lst))))))

]=> (remove-duplicates ‘(b b c b))
(remove-duplicates ‘(b c b))

(remove-duplicates ‘(c b))
(cons c (remove-duplicates(b))

(cons b (‘()))
(cons c ‘(b))

(c b)
(c b)

(c b)

12

University of Toronto

CSC324: Principles of Programming Languages

Software Verification

13

University of Toronto

CSC324: Principles of Programming Languages

Software Verification
• Software crisis

– Quality of software?

• Enforce roles/responsibilities
Architects Programmers QA

– QA test the program on many different inputs
– However, subtle bugs may remain undiscovered, only to appear at random,

inconvenient or dangerous moments.

• Implement quality processes (e.g. CMM,ISO…)
– However, bugs may remain undiscovered

• Use Algebraic proofs
– Especially useful for safety-critical software (e.g. Air control,….)

14

University of Toronto

CSC324: Principles of Programming Languages

Proving Properties of Programs
• Example:

(define (append X Y)
(if (null? X) Y

(cons (car X) (append (cdr X) Y))))

(define (length X)
(if (null? X) 0

(+ 1 (length (cdr X)))))

– Prove the following:
Theorem: (length (append X Y)) = (length X) + (length Y)

for all lists X and Y

15

University of Toronto

CSC324: Principles of Programming Languages

Software Verification: prove outline
• Use mathematical induction on the length of X

– A two-part method of proving a theorem involving an integral parameter.
• First the theorem is verified for the smallest admissible value of the integer.
• Then it is proven that if the theorem is true for any value of the integer, it is

true for the next greater value. The final proof contains the two parts.

• First, prove that the theorem is true for lists of length 0 [Basis]

• Then, prove that if the theorem is true for lists of length N, then it
is also true for lists of length N+1 [Inductive Step]

• This implies that the theorem is true for lists of any length (i.e. for
any list)

16

University of Toronto

CSC324: Principles of Programming Languages

Software Verification: structural induction
• Actually, we will use a variation of induction that emphasizes the

structure of lists, not their length.

• First, prove that the theorem is true for X = ' () i.e. when X has
length 0 [Basis]

• Then, prove that if the theorem is true for X = L, then it is also true
for X = (cons E L) [Inductive Step]
– Note: if L has length N, then (cons E L) has length N + 1

17

University of Toronto

CSC324: Principles of Programming Languages

Software Verification: preliminaries
• Before using induction (or any other technique) to prove a complex

property of a program, write down the basis properties that can be
trivially verified by inspecting the program code

• The inductive proof should only use these properties of the code.

• The code itself plays no other role in a proof of correctness and can
be henceforth ignored.

• Note: If the basic properties are wrong, then the entire proof is
wrong. So be sure to get them right!!

18

University of Toronto

CSC324: Principles of Programming Languages

Basic properties of append
• Code:

(define (append X Y)
(if (null? X) Y

(cons (car X) (append (cdr X) Y))))

• Using X = ' ()
(append ' () Y) = Y [1]

• Using X = (cons E L)
(append (cons E L) Y) = (cons E (append L Y)) [2]

• Note:
– if X = (cons E L), then (car X) = E, (cdr X) = L

19

University of Toronto

CSC324: Principles of Programming Languages

Basic Properties of Length
• Code:

(define (length X)
(if (null? X) 0)

(+ 1 (length (cdr X)))))

• Using X = ' ()
(length ' ()) = 0 [3]

• Using X = (cons E L)
(length (cons E L)) = 1+ (length L) [4]

• Note:
– if X = (cons E L), then (cdr X) = L

20

University of Toronto

CSC324: Principles of Programming Languages

Summary of basic properties
• (append ' () Y) = Y [1]

• (append (cons E L) Y) = (cons E (append L Y)) [2]

• (length ' ()) = 0 [3]

• (length (cons E L)) = 1+ (length L) [4]

• Using these basic properties, we shall prove (by induction) a more
complex property:

Theorem: (length (append X Y)) = (length X) + (length Y)

21

University of Toronto

CSC324: Principles of Programming Languages

Software Verification: basis proof
• Using induction on the structure of X

• Basis: when X = ' ()

(length (append X Y))
= (length (append ‘() Y))
= (length Y) [by 1]
= 0 + (length Y)
= (length ' ()) + (length Y) [by 3]
= (length X) + (length Y)

Therefore, the theorem is true when X = ' ()

22

(append ' () Y) = Y [1]

(append (cons E L) Y) = (cons E (append L Y)) [2]

(length ' ()) = 0 [3]

(length (cons E L)) = 1+ (length L) [4]

University of Toronto

CSC324: Principles of Programming Languages

Software Verification: inductive step
• Suppose that the theorem holds for X = L , i.e. suppose that

(length (append L Y)) = (length L) + (length Y)
{Inductive hypothesis}

• Now, prove that the theorem holds for X = (cons E L)

23

University of Toronto

CSC324: Principles of Programming Languages

Proof of inductive step
• If X = (cons E L) then

(length (append X Y))
= (length (append (cons E L) Y))
= (length (cons E (append L Y))) [by 2]
= 1 + (length (append L Y)) [by 4]
= 1 + (length L) + (length Y) [by inductive hypothesis]
= (length (cons E L)) + (length Y) [by 4]
= (length X) + (length Y)

24

(append ' () Y) = Y [1]

(append (cons E L) Y) = (cons E (append L Y)) [2]

(length ' ()) = 0 [3]

(length (cons E L)) = 1+ (length L) [4]

University of Toronto

CSC324: Principles of Programming Languages

Summary of proof of theorem
• For any List, Y,

• Basis: the theorem holds for X = ' ()

• Inductive Step: if the theorem holds for X = L, then it holds
for X = (cons E L)

• By the principle of structural induction, the theorem holds for
any lists X and Y

• Theorem:
(length (append X Y)) = (length X) + (length Y)

25

University of Toronto

CSC324: Principles of Programming Languages

Proving properties of programs
• Example 2:

(define (member A X)
(cond ((null? X) #f)

((equal? A (car X)) #t)
(else (member A (cdr X)))))

– Prove the following:
Theorem: If (member A X) then

(member A (append X Y))
for any A, and any lists X and Y.

26

University of Toronto

CSC324: Principles of Programming Languages

Outline of proof
• As before, we will use structural induction on X

• First, prove that the theorem is true for X=' () [basis]

• Then, prove that if the theorem is true for X = L, then it is true
for X = (cons E L) [inductive step]

• However, this time proof will be more complex, because the
program can terminate its recursion in two ways.

27

University of Toronto

CSC324: Principles of Programming Languages

Basic properties of member
• Code:

(define (member A X)
(cond ((null? X) #f)

((equal? A (car X)) #t)
(else (member A (cdr X)))))

• Using X = ' ()
(member A ' ()) = #f [5]

• Using X = (cons A L)
(member A (cons A L)) = #t [6]

• Note:
– (car X) = A

28

University of Toronto

CSC324: Principles of Programming Languages

Basic properties of member – cont’d
• Code:

(define (member A X)
(cond ((null? X) #f)

((equal? A (car X)) #t)
(else (member A (cdr X)))))

• Using X = (cons E L) where E != A
(member A (cons E L)) = (member A L) [7]

• Note:
– (car X) = E, (cdr X) = L

29

University of Toronto

CSC324: Principles of Programming Languages

Summary of basic properties
• member Code:

– (member A ' ()) = #f [5]

– (member A (cons A L)) = #t [6]

– If E!=A then
(member A (cons E L)) = (member A L) [7]

• append Code:
– (append ' () Y) = Y [1]

– (append (cons E L) Y) = (cons E (append L Y)) [2]

30

University of Toronto

CSC324: Principles of Programming Languages

Proof of theorem
• Theorem: If (member A X) then

(member A (append X Y))

• Proof: by induction on X

• Basis: if X = ' () then

(member A X)
= (member A ' ())
= #f [by 5]

Therefore, the premise of the theorem is false.
Therefore, the theorem is trivially true (for X = ' ())

31

University of Toronto

CSC324: Principles of Programming Languages

Inductive step
• Suppose the theorem is true for X=L, i.e.

if (member A L) then
(member A (append L Y))

{Inductive hypothesis}

• Now, prove the theorem is true for X = (cons E L)

32

University of Toronto

CSC324: Principles of Programming Languages

Proof of inductive step
• Let X = (cons E L) , there are two cases

• Case 1: E = A

Therefore, X = (cons A L)
Therefore, (member A (append X Y))

= (member A (append (cons A L) Y))
= (member A (cons A (append L Y))) [by 2]
= #t [by 6]

Therefore, the conclusion of the theorem is true
Therefore, the theorem itself is trivially true for X = (cons A L)

33

(append (cons E L) Y) = (cons E (append L Y)) [2]

(member A (cons A L)) = #t [6]

University of Toronto

CSC324: Principles of Programming Languages

Proof of inductive step – cont’d
• Let X = (cons E L), there are two cases

• Case 2: X = (cons E L) where E != A

if(member A X) = #t then
(member A (cons E L))

= ??
= (member A L)
= (member A (append L Y)) [by inductive hypothesis]
= (member A (cons E (append L Y))) [by 7]
= (member A (append (cons E L) Y)) [by 2]
= (member A (append X Y))

Therefore, the theorem is true when X = (cons E L) and E != A

34

(append (cons E L) Y) = (cons E (append L Y)) [2]
If E!=A then (member A (cons E L)) = (member A L) [7]

University of Toronto

CSC324: Principles of Programming Languages

Summary of proof of theorem
• For any A, and any list Y

• Basis
The theorem holds for X = ' ()

• Inductive Step:
If the theorem holds for X = L, then it holds for X = (cons E L)
Therefore, by the principle of structural induction, the theorem holds
for any A and any lists X and Y.

• Theorem: If (member A X) then
(member A (append X Y))

35

University of Toronto

CSC324: Principles of Programming Languages

Software Verification
• Interested to learn more…

– CSC465: Formal Methods in Software Design

36

University of Toronto

CSC324: Principles of Programming Languages

Possible Directions for PLs
• Logic

– Program
• declarative English-like statements
• Control embedded in interpreter

– Testing:
• Evaluate query answer against known answers

• Functional
– Program

• Pure functions

– Testing
• Proof it!

37

University of Toronto

CSC324: Principles of Programming Languages

Mixing Imperative & Logic/functional
• Logic

– Use plugin (e.g. swi-prolog, jiprolog, InterProlog, JPL…)

• Functional
– Problems:

• Global variables
• Pass-by-reference
• Polymorphism

38

University of Toronto

CSC324: Principles of Programming Languages

What is polymorphism?
• Biology:

– occurs when two or more clearly different phenotypes exist in the same
population of a species

• Computer science:
– polymorphism is a programming language feature that allows values of different

data types to be handled using a uniform interface

39

University of Toronto

CSC324: Principles of Programming Languages

Polymorphism

40

class ScreenManager {
Circle_circle;
void refresh (){

_circle.draw();
}

}

class Circle {
int _nCenter;
Circle() {

_nCenter = 10
}
draw(int nX, int nY){

}
}

10: …..
20: …..
30: …..
40: jump 100

98: …..
99: mov Ax,10
100: draw …
…..

University of Toronto

CSC324: Principles of Programming Languages

Polymorphism

41

class Circle inherits Shape{

draw(int nX, int nY){

}
}

class Rectangle inherits Shape{

draw(int nX, int nY){

}
}

class Shape{

draw(int nX, int nY){

}
}

class ScreenManager {
Shape _shape;
void refresh (){

_shape.draw();
}

}

University of Toronto

CSC324: Principles of Programming Languages

Polymorphism

42

class ScreenManager {
Shape _shape;
void refresh (){

_shape.draw();
}

}

10: …..
20: …..
30: …..
40: jump ???

98: …..
99: mov Ax,10
100: draw …
…..

class Circle {
int _nCenter;
Circle() {

_nCenter = 10
}
draw(int nX, int nY){

}
}

	Slide Number 1
	Scheme Practice 4
	Scheme Practice 4 - trace
	Scheme Practice 4 - trace
	Scheme Practice 4 - trace
	Scheme Practice 4 - trace
	Scheme Practice 4 - trace
	Scheme Practice 4 - trace
	Scheme Practice 4 - trace
	Scheme Practice 4 - trace
	Scheme Practice 4 - trace
	Scheme Practice 4 - trace
	Software Verification
	Software Verification
	Proving Properties of Programs
	Software Verification: prove outline
	Software Verification: structural induction
	Software Verification: preliminaries
	Basic properties of append
	�Basic Properties of Length
	Summary of basic properties
	Software Verification: basis proof
	Software Verification: inductive step
	Proof of inductive step
	Summary of proof of theorem
	Proving properties of programs
	Outline of proof
	�Basic properties of member
	Basic properties of member – cont’d
	Summary of basic properties
	Proof of theorem
	Inductive step
	Proof of inductive step
	Proof of inductive step – cont’d
	Summary of proof of theorem
	Software Verification
	Possible Directions for PLs
	Mixing Imperative & Logic/functional
	What is polymorphism?
	Polymorphism
	Polymorphism
	Polymorphism

