
University of Toronto

Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 12

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

University of Toronto

ML: introduction
• Developed at Edinburgh (early ’80s) as Meta-Language for a

program verification system
– Now a general purpose language
– There are two basic dialects of ML

• Standard ML (1991) & ML 2000
• Caml (including Objective Caml, or OCaml)

• A pure functional language
– Based on typed lambda calculus
– Grew out of frustration with Scheme!
– Serious programs can be written

without using variables

• Widely accepted
– reasonable performance (claimed)
– can be compiled
– syntax not as arcane as Scheme

2

University of Toronto

ML: main features
• Strong, static typing

– Quite a fancy type system!

• Parametric polymorphism
– Similar to OOP (in fact, it influenced OO)

• Pattern matching
– Function as a template

• Exception handling
– Allow you to handle errors/exception

• Type inference

• Recursive data type

3

University of Toronto

ML: how far have PL advanced?
• Writing a gcd implementation

Pascal

(define gcd
(lambda (m n)

(if (zero? n) m
(gcd n (remainder m n)))))

Scheme

fun gcd(m,n) =
if m=0 then n else

gcd(n mod m, m);

ML

4

University of Toronto

ML: types & expressions

• Primitive types
– bool, int, real, string

• Complex types
– list, tuple, array, record, function

• Each ML expression has a type associated with it.
– Interpreter builds the type expression for each input
– Cannot mix types in expressions

2+3.0 error!
• Must explicitly coerce/type-case e.g.

real(2) + 3.0 : real

5

University of Toronto

ML: Primitive Types
• int e.g. x: int;

– Negative sign uses ~
– Operators: + - * div mod

• real e.g. x: real;
– 3.45 or using e notation (3E7)
– Operators: + - * /
– Conversion functions: real(integer), floor(real), abs(x)

• string e.g. s: string;
– Delimited by double quotes
– Caret ^ is concatenation e.g. "house" ^ "cat"
– Function size returns length of string
– Special characters: \n \t \" \\

• bool e.g. b: bool;
– true (and false)

6

University of Toronto

ML: operators
• All operators are infix

• Logical operators:
– Short-circuit evaluation
– if … then … else is an expression,

not a control structure…

• Numeric operators:
– The usual <, >, <=, >= and <> are available
– For reals, = and <> are not available (a <= b andalso a >= c)
– For strings, these can be used for lexicographic ordering

• Operator overloading:
– Same symbol could be used for operations that are internally dissimilar
– *, +, - , <, <=, >, >= are all overloaded
– Leftmost argument is inspected first to decide on type

not Negation
andalso Conjunction
orelse Disjunction
if … then … else conditional selection

7

University of Toronto

ML: assignment
• Use val to assign value to variables

val <indentifier-name> = <expression>;

• Examples:
- val seconds = 60;
> val seconds = 60 : int

- val minutes = 60;
> val minutes = 60 : int

- val tm = seconds * minutes;
> val tm = 86400 : int

- val shout = "aaa" ^ "rgh" ^ "!!!! ";
> val shout = “aaargh!!!” : string

8

University of Toronto

ML: constructor types - lists
• Syntax [obj1, obj2, …]

– Objects in a list must be homogenous (same type)
• E.g.

[1,2,3] : int list -- a list of integers
["dog", "cat", "moose"] : string list -- a list of strings
[1.0,2.0,3.0] : real list -- a list of reals
[[1,2],[3,4],[5,6]] : int list list -- a list of lists of integers

– The empty list is written [] or nil

• Operations:
– @ operator is used to concatenate two lists of the same type
– :: operator returns a new list with the first argument append to the front

• E.g. 2 :: [3,4] returns [2,3,4]
[1,2]::[[3,4], [5,6]] returns ??

– hd returns the first element of a list
• E.g. hd[1,2,3] returns 1

– tl returns the tail
• E.g tl[1,2,3] returns [2,3]

9

University of Toronto

ML: constructor types - tuples
• Syntax (obj1, obj2, …)

– Objects in a tuple can be heterogeneous (different types)
• E.g.

(2, "abc") : int * string
(2,3.0, "abc") : int * real * string
(2,(3.0, "ab"), "cd") : int * (real * string) * string
[(1, "a"),(3, "bc"),(7, "efg")] : (int * string) list

– The empty tuple is written () and often called unit
– Composite format of a tuple can be used on left-hand side of val

• Eg. - val (day, month, year) = (13,”March”,1066);

• Operations:
– # operator to extract the ith field of a tuple

- #2(6,7,”abc”) returns 7
- #3(6,7,”abc”) returns abc

– = and <> operators for equality/in-equality
- val x = ~3; // -3
- (3,"a",true) = (abs x, "a", (3 > 2));

10

University of Toronto

ML: constructor types - functions
• Syntax fun <func-name> <input-param> = <expression>;

– Keyword fun starts the function declaration
– Function arguments don’t always need parentheses, doesn’t hurt to use them

• Examples:
– fun fahrToCelsius f =

(f -freezingFahr) * 5 div 9;

– fun foo L =
(1 + hd L) :: (tl L);

11

University of Toronto

ML: constructor types - functions

• Functions have types too. ML interpreter will infer the type.
– E.g. fun square x =

x * x;

• The function square takes an integer as input and returns an integer as output.

• This is written as square: intint (indicates this a function)

12

University of Toronto

ML: constructor types - functions

• ML figures out the input and/or output types for simple expressions,
constant declarations, and function declarations
– Type checking requires that type expression of functions and their arguments

match, and that type expression of context match result of function

– If the default isn’t what you want, you can specify the input and output types

fun divideBy2 (y : real) =
y / 2.0;

• What is this doing?
fun foo (m, n) =

if m > n then
[]

else m :: foo(m+1, n);

> foo(1,6);
13

University of Toronto

ML: constructor types - functions
• Examples:

– Factorial (n!)
fun fact n =

if n = 0 then
1

else
n * fact(n-1);

– List reverse
fun reverse L =

if L = nil then
nil

else
reverse(tl L) @ [hd L];

fun 4 4 * (fact 3)
 4 * 3 * (fact 2)
 4 * 3 * 2 (fact 1)
 4 * 3 * 2 * 1 * (fact 0)
 4 * 3 * 2 * 1 * 1
 24

reverse [1,2,3] reverse[2,3] @ 1
 reverse[3] @ 2 @ 1
 reverse[] @ 3 @ 2 @ 1
 [] @ 3 @ 2 @ 1
 [3,2,1]

14

University of Toronto

ML: local environment using let
• Syntax let

val <variable1> = <expression1>;
…..
val <variablen> = <expressionn>;

in
<expression>

end;

• Let allows declarations to be used in expressions
• Similar to Let* in Scheme
• Example:

– Compute hundredth power of a number
fun hundredthPower(x : real) =

let
val four = x * x * x * x;
val twenty = four * four * four * four * four;

in
twenty* twenty* twenty* twenty* twenty

end;
15

University of Toronto

ML: pattern matching
• Syntax fun <func> <pattern1> = <expression1>

| <func> <pattern2> = <expression2>
…….
| <func> <patternn> = <expressionn>

• Define a function by a series of equations, LHS is a pattern.
– Always put the most specific pattern first
– ML interpreter will use the first equation whose LHS matches

• Example:
– Fibonacci function (an = an-1 + an-2 :- 0 , 1, 1, 2, 3, 5, 8, 13, 21,…)

fun fib n =
if n = 0 then 0

else if n = 1 then 1
else fib(n-1) + fib(n-2);

• Pattern matching is powerful:
– Allows the programmer to see the arguments. No more hd’s and tl’s.

fun fib(0)= 0
| fib(1)= 1
| fib(N)= fib(N-1) + fib(N-2);

16

University of Toronto

ML: pattern matching – cont’d
• Examples:

– Sum all the elements in a list of integers
fun listsum L =

if (null L) then 0
else (hd L) + listsum(tl L);

fun listsum [] = 0
| listsum L = (hd L) + listsum(tl L);

fun listsum [] = 0
| listsum(h::t) = h + listsum(t);

listsum[1,2,3,4] 1+ listsum[2,3,4]
1+2+listsum[3,4]
1+2+3+listsum[4]
1+2+3+4+listsum[]
1+2+3+4+0
10

17

Better
Version

Even
Better!

University of Toronto

ML: pattern matching – cont’d
• Examples:

– Reversing a list
fun reverse L =

if L = nil then nil
else reverse(tl L) @ [hd L];

fun reverse(nil) = nil
| reverse(h::t) = reverse(t) @ [h];

18

reverse [1,2,3] reverse[2,3] @ 1
 reverse[3] @ 2 @ 1
 reverse[] @ 3 @ 2 @ 1
 [] @ 3 @ 2 @ 1
 [3,2,1]

University of Toronto

ML: pattern matching – cont’d
• Examples:

– Return first n elements of a list
fun take ([], Index) = []
| take (h::tl, Index) =

if Index > 0 then
h::take(tl, Index - 1)

else
[];

19

take([1,2,3] , 2) 1 :: take ([2,3], 1)
 1 :: 2 take([3], 0)
 1 :: 2 :: []
 [1, 2]

	Slide Number 1
	ML: introduction
	ML: main features
	ML: how far have PL advanced?
	ML: types & expressions
	ML: Primitive Types
	ML: operators
	ML: assignment
	ML: constructor types - lists
	ML: constructor types - tuples
	ML: constructor types - functions
	ML: constructor types - functions
	ML: constructor types - functions
	ML: constructor types - functions
	ML: local environment using let
	ML: pattern matching
	ML: pattern matching – cont’d
	ML: pattern matching – cont’d
	ML: pattern matching – cont’d

