
University of Toronto

Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 13

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

University of Toronto

ML: pattern matching – cont’d
• Patterns may consist of constants (integers , true, false..) , tuples

and variables. Arithmetic or logical expressions are invalid.
– E.g fun wrong(x=y) = “…”

• No duplicates in patterns
– E.g. fun wrong_equal (x,y) = true

| wrong_equal (x,y) = false;

• Pattern matching with wild cards
– E.g. fun first (x,_) = x;
– Matches anything like a variable. Binds nothing.
– Avoid need to name every pattern

• ML does extensive pattern checking
– E.g. - fun reverse (h::t) = reverse(t) @ [h];

> Warning: match nonexhaustive

2

University of Toronto

ML: pattern matching – cont’d
• How ML matches patterns?

fun func (x::y::zs,w) =
| (…) =
| (…) =

func([1,2,3,4],5)

(,)

:: 5

::

::

::

nil4

3

2

1

(,)

w::

::x

y zs

3

University of Toronto

ML: record type
• We have seen list [] and tuple ()…

• Record syntax
{ <field1>:<type1>, <field2>:<type2>,….,<fieldn>:<typen>}

• A record instance is defined as
{ <label1>=<value1>, <label2>=<value2>,….,<labeln>=<valuen>}

• A record is a structured data type in which each element is accessed
by a unique name.
– E.g. { name: string,

age: int,
salary: int}

– {name = “Dave”, age = 77, salary=99000}
> val it = {name = “Dave”, age = 77, salary=99000} : {name:string,

age:int,salary:int}

A field called name with type string
A field called called age with type int
A field called salary with type int

4

University of Toronto

ML: record type – cont’d
• Operations

– # operator to extract a field from a record instance
– E.g.

- #salary {name =“john”, age=35, salary=90};
> val it = 90 : int

- #options {startcity="toronto",endcity="boston",
options=("12",10,"K")};

> val it = ("12",10,"K") : string * int * string

5

University of Toronto

ML: record type – cont’d
• Named Types

– ML provides a way to give a name to a type
• E.g - type waitress = { name: string , wages: int, tips: int };

– Named types can be used anywhere that ML types can be.
• E.g. - fun income (w: waitress) =

#wages w + #tips w;
> val income = fn : waitress -> int

- fun income (w: { name: string , wages: int, tips: int }) =
#wages w + #tips w;

> val income = fn : {name:string, tips:int, wages:int} -> int

– Named types can be used in type declaration
• E.g. - type waitresses = waitress list;

- [{name=“sally”, wages= 20, tips=10},
{name=“alice”, wages= 15, tips=15}]

6

University of Toronto

ML: record type – cont’d
• Named Types – cont’d:

– E.g.: finding the total income of all waitresses
> type waitress = { name: string , wages: int, tips: int };
> fun income (w: waitress) =

#wages w + #tips w;
> type waitresses = waitress list;
> fun total (WL: waitresses) =

if WL = [] then 0
else income(hd WL) + total(tl WL);

- WL = [{name=“sally”, wages= 20, tips=10},
{name=“alice”, wages= 15, tips=20},
{name=“sue”, wages= 25, tips=20}]

-total(WL)
110

30 +
[{name=“alice”, wages= 15, tips=20}
{name=“sue”, wages= 25, tips=20}]

30 + 35 +
[{name=“sue”, wages= 25, tips=20}]

30 + 35 + 45

7

University of Toronto

ML: pattern matching on records
• Recall syntax fun <func> <pattern1> = <expression1>

| <func> <pattern2> = <expression2>
…….
| <func> <patternn> = <expressionn>

• You can use patterns to match on records
– E.g finding the total income of all waitresses

> type waitress = { name: string , wages: int, tips: int };
> fun income (w: waitress) =

#wages w + #tips w;
> type waitresses = waitress list;
> fun total ([]: waitresses) = 0

| total(W::WLTail) = (income W) + (total WLTail);

• You can also use wild cards …
– E.g.

> fun costly({price:int, …}: footype) = price > 100.0;

8

University of Toronto

ML: …
• What does ML infer about this function?

- fun length L =
if (null L) then 0

else 1 + length(tl L);
- length[1,2,3,4]
> val it = 4 : int
- length["ab","cd","xy"];
> val it = 3 : int
- length[[1,2],[3,4],[123,123,222],[1]];
> val it = 4 : int

– Seems length has/accept these types
• int list int
• String list int
• int list list int

– Obviously, we would like length to apply to any kind of list.

9

University of Toronto

ML: …
• What does ML infer about this function?

- fun length L =
if (null L) then 0

else 1 + length(tl L);

– In ML, length has all of these types. This is written as
length: 'a list int

• 'a is a type variable. It stands for any type
• This means that the input to length is a list of items all of type 'a where 'a can be

int, string, int list, or any other type.

– In fact, that’s what ML infers for this function
- fun length L = if (null L) then 0 else 1 + length(tl L);
> val length = fn : 'a list -> int

10

University of Toronto

ML: polymorphism
• Greek: poly = many , morph = form

• Definitions:
– Polymorphism:

• dictionary.com: the capability of assuming different forms; the capability of
widely varying in form. The occurrence of different forms, stages, or types

• Software: a value/variable can belong to multiple types
– Monomorphism:

• Dictionary.com: having only one form, same genotype…
• Software: every value/variable belongs to exactly one type

• Why is useful?
– To avoid redundant function definitions, e.g.:

int-length : int list  int
real-length: real list  int
string-length: string list int ………..
code for each of these functions would be virtually identical!

– Polymorphism adds flexibility & great convenience…. but…

11

University of Toronto

ML: polymorphism types
• Ad-hoc polymorphism:

– Different operations on different types known by the same name (also
called overloading)

– E.g. 3 + 4 vs. 3.1 + 4 compiler/interpreter must change 4 to 4.0 first
vs. "ab" + "cd"

• Inheritance polymorphism:
– Use sub-classing to define new versions of existing functions (OO)
– E.g.:

public class Shape{

public void draw(int x, int y){
// do nothing

}
}

public class Rectangle extends Shape{
public void draw(int x, int y){

// draws a rectangle
}

}

public class Circle extends Shape{

public void draw(int x, int y){
}

}
….
Shape myShape;
myShape = new Rectangle();

….. // some other piece of code
myShape.draw();

Shape

Rectangle Circle

12

University of Toronto

ML: polymorphism types – cont’d
• Parametric Polymorphism(ML):

– Allows types to be parameters to functions and other types.
– Basic idea is to have a type variable…
– Type of function depend on type of parameter
– Implementation (ML):

– One copy of code is generated
– Polymorphic parameters must internally be implemented as pointers

13

University of Toronto

ML: polymorphism – cont’d
• Polymorphic functions are very common in ML:

- fun id X = X;
> val id = fn : 'a -> 'a

- fun listify X = [X];
> val listify = fn : 'a -> 'a list

- fun double X = (X,X);
> val double = fn : 'a -> 'a * 'a

- fun inc(N,X) = (N+1,X);
> val inc = fn : int * 'a -> int * 'a

- id 7;
> val it = 7 : int
- id "abc";
> val it = "abc" : string

- listify 3;
> val it = [3] : int list
- listify 7.3;
> val it = [7.3] : real list

- double “xy”;
> val it = ("xy","xy") : string * string
- double [1,2,3];
> val it = ([1,2,3],[1,2,3]) : int list * int list

- inc (4,(34,5));
val it = (5,(34,5)) : int * (int * int)

14

University of Toronto

ML: polymorphism – cont’d
• Polymorphic functions are very common in ML:

- fun swap(X,Y) = (Y,X);
> val swap = fn : 'a * 'b -> 'b * 'a

- fun pair2list(X,Y) = [X,Y];
> val pair2list = fn : 'a * 'a -> 'a list

- fun apply(Func,X) = Func X;
> val apply = fn : ('a -> 'b) * 'a -> 'b

- fun applytwice(Func,X) = Func(Func X);
> val applytwice = fn : ('a -> 'a) * 'a -> 'a

- swap (“abc”,7);
> val it = (7,"abc") : int * string
- swap (13.4,[12,3,3]);
val it = ([12,3,3],13.4) : int list * real

- pair2list(1,2);
> val it = [1,2] : int list
- pair2list(1,"cd");
?

- apply (hd, [1,2,3]);
> val it = 1 : int
- apply (length, [23,100]);
> val it = 2 : int

- applytwice (square,3);
> val it = 81 : int
- applytwice (tl, [1,2,3,4]);
- ?

15

University of Toronto

ML: polymorphism – cont’d
• Operators that restrict polymorphism

– Arithmetic operators: + , -, * and –
– Division-related operations such as / , div and mod
– Inequality comparison operators: < , <=, >=, and >
– Boolean connectives: andalso, orelse and not
– String concatenation operator: ^
– Type conversion operators

• E.g. ord, chr, real, str, floor, ceiling, round, truncate,…

• Operators that allow polymorphism
– Tuple operators
– List operators
– Equality operators = and <>

16

University of Toronto

Exceptions: introduction
• An exception is any unusual event, erroneous or not, that is

detectable either by hardware or software and that may require
special processing.

• The special processing that may be required by the detection of an
exception is called exception handling. This processing is done by a
code unit called the exception handler.

• Why do we need exceptions if the language is strongly typed?
– In a language without exception handling: when an exception occurs, control

goes to the operating system, where a message is displayed and the program
is terminated.

– In a with exception handling: programs are allowed to trap some exceptions,
thereby providing the possibility of fixing the problem and continuing.

17

University of Toronto

Exceptions: execution flow

18

University of Toronto

Exceptions: why?
• How was error handling done in early programming languages?

– Send an auxiliary parameter or use the return value to indicate the return
status of a subprogram (e.g. C standard library functions)

nError = mult(matrix1,matrix2,product);
if(nError == -1){ // error

}
else{ // no error, continue normally

}
– Pass a label parameter to the subprogram. If an error occurs, use the label to

jump to another location in the program (e.g. FORTRAN)
mult(matrix1,matrix2,product,label)

….
if error

goto label
– Pass an error-handler subprogram to the called subprogram.

mult(matrix1,matrix2,product,error_func)

if error
error_func(…)

19

University of Toronto

ML: exceptions
• Syntax exception <exception-name> of <type-expression>

• Example:
- exception NegArg of int;
> exception NegArg of int

- fun fact N = if N = 0 then 1
else if N > 0 then N * fact(N-1)

else raise NegArg(N);
> val fact = fn : int -> int

- fact(5);
> val it = 120 : int

- fact(~5);
> uncaught exception NegArg raised at: …

20

	Slide Number 1
	ML: pattern matching – cont’d
	ML: pattern matching – cont’d
	ML: record type
	ML: record type – cont’d
	ML: record type – cont’d
	ML: record type – cont’d
	ML: pattern matching on records
	ML: …
	ML: …
	ML: polymorphism
	ML: polymorphism types
	ML: polymorphism types – cont’d
	ML: polymorphism – cont’d
	ML: polymorphism – cont’d
	ML: polymorphism – cont’d
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

