
University of Toronto

Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 14

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

University of Toronto

ML: exceptions
• How to handle an exception?

– Syntax <expression>
handle <exception1> => <exception-handler1>
| <exception2> => <exception-handler2>
| ….
| <exceptionn> => <exception-handlern>

– If no exceptions are raised, then return the value of <expression>
– If <exceptioni> is raised then return the value of <exception-handleri>

• Only the first matching exception is considered.

• Example: N! / (M! (N-M)!)
- exception Negative of int;
- exception TooBig of int;
- fun comb (N,M) =

if N < 0 then raise Negative(N)
else if M < 0 then raise Negative(M)

else if M > N then raise TooBig(M)
else

fact(N) div (fact(M) * fact(N-M));
> val comb = fn : int * int -> int

- fun mycomb (N,M) =
comb(N,M)
handle Negative(X) => ~1
| TooBig(M) => 0;

> val mycomb = fn : int * int -> int
- mycomb(11,8);
> val it = 165 : int
- mycombt(~5,123);
> val it = ~1 : int

2

University of Toronto

ML: exceptions & scopes
• Suppose f calls g calls h, and h raises an exception: g handler is used

• Example:
- exception e1;
- exception e2;
- exception e3;
- fun h(1) = raise e1

| h(2) = raise e2
| h(3) = raise e3
| h(_) = "ok";

- fun g(N) = h(N)
handle e2 => "error g2"
| e3 => "error g3";

- fun f(N) = g(N)
handle e1 => "error f1"
| e2 => "error f2";

<f-expression>
handle
<exceptioni> =>
<exception-handlerf>

<g-expression>
handle
<exceptioni> =>
<exception-handlerg>

f g h ……
……
raise <exceptioni>
……

- f(4);
> val it = "ok" : string
- f(3);
> val it = "error g3" : string
- f(2);
> val it = "error g2" : string
- f(1);
> val it = "error f1" : string
- f(0);
> val it = "ok" : string

3

University of Toronto

ML: structures
• Syntax

structure <structure-name> =
struct

(* exceptions, definitions, functions… *)
end

structure Mapping =
struct

fun insert(key,value,[]) = [(key,value)]
| insert(key,value,(key1,value1)::rest) =

if key = key1 then
(key,value)::rest

else
(key1,value1)::insert(key,value,rest);

fun lookup(key,(key1,value1)::rest) =
if key = key1 then

value1
else

lookup(key,rest);
end;

4

University of Toronto

ML: structures – cont’d
• Structure access:

– Using long identifier
• E.g. - Mapping.insert(538,"languages",[]);

> val it = [(538,"languages")] : (int * string) list

- Mapping.lookup(538,[(538,"languages"),(540,"courses")]);
> val it = "languages" : string

– Using open function
• E.g. - open Mapping;

- lookup(538,[(538,"languages"),(540,"courses")]);
> val it = "languages" : string

5

University of Toronto

ML: structures – cont’d
• Properties

– It is legal to define one structure within another

– If a structure has been defined within another structure, then its components
can be accessed by an extension of the long identifier principle (x.y.z…)

– A structure may be opened within another to achieve greater modularity.
However, this may lead to name redefinition problems

– There is no equality defined over structures.

6

University of Toronto

ML: signatures
• Syntax

signature <signature-name> =
sig

(* definitions *)
end;

• Example:
- signature OBJ_sig =
sig

type OBJECT
val grow : OBJECT -> OBJECT
val shrink: OBJECT -> OBJECT

end;

7

University of Toronto

ML: signatures
• Signatures & Structures:

- signature OBJ_sig =
sig

type OBJECT
val grow : OBJECT -> OBJECT
val shrink: OBJECT -> OBJECT

end;

- structure INT_struct : OBJ_sig =
struct

type OBJECT = int
fun grow n = n + 1
fun shrink n = n –1

end;

• Benefits of using signature:
– Separation of specification from implementation decisions
– Ability to provide programmers with different views of source code

• If a structure implements a signature, then this structure is said to be
constrained by this signature.

8

University of Toronto

ML: signatures
• Rules of signatures

– Rule 1: name matching
– Rule 2: type matching
– Rule 3: privacy

• Any definition within a constrained structure that is not matched within its
signature is private.

– Such definition cannot be referenced by long identifier nor is it is made available if the
structure is opened
signature FOO =

sig
val talkToMe : unit -> int

end;
structure Foo2 : FOO =
struct

val bar = 42
fun talkToMe () = bar
fun hidden() = (* more code *)

end;

9

University of Toronto

ML: signatures
• Properties

– There is no equality defined for signatures.

– They are top-level objects, and cannot be defined within another object;
furthermore (unlike structures) they cannot be nested.

– The keyword include can be used to save writing long signatures by
incorporating the contents of existing signatures within a new definition:

• E.g. signature NUM_sig =
sig

include OBJ_sig
val Int_to_OBJ : int -> OBJECT
val Real_to_OBJ: real -> OBJECT

end

10

University of Toronto

Part 2: Language Design

11

University of Toronto

Language Specification: syntax vs. semantics
• Syntax

– The structural rules of a language that determine the form of a program
written in the language

– Examples:
• In C, variable names can be followed by two adjacent + symbols (Index++)
• In Java, the main method must be defined as public static void main(…)
• In C++/C, the if statement is written as if(<expression>) <block> else <block>

• Semantics
– The meaning of the various language constructs in the context of a given

program
– Examples:

• In C ‘j = Index++;’ means “increment Index after assigning its value to j”
• In Java, defining a main method in a class means you can start the program by

invoking that class from the command line.
• In C++/C, the if statement means a selection construct that allows programmer

to express one of two possible execution paths depending on some condition.

12

University of Toronto

Language Specification: syntax vs. semantics

SUM = 0
DO 11 K=1,N
SUM = SUM + 2 * K

11 CONTINUE

sum = 0;
for (k=1; k <= n; ++k)

sum += 2*k;

sum := 0;
for k:= 1 to n do

sum := sum + 2 * k;

Fortran
C (Java/Javascript) Pascal

13

University of Toronto

Language Specification: compilation vs.
interpretation

interpreter
compiler

Line
Processor

Output

14

University of Toronto

Language Specification: Scanner & Parser

• Scanner
– Divides program into sentences and tokens. Checks identifier format.

15

sum = 0;
for (k=1; k <= n; ++k)

sum += 2*k;

sum = 0;for (k=1; k <= n; ++k) sum += 2*k;

token1

University of Toronto

Language Specification: Scanner & Parser

• Scanner
– Divides program into sentences and tokens. Checks identifier format.

16

sum = 0;
for (k=1; k <= n; ++k)

sum += 2*k;

sum = 0;for (k=1; k <= n; ++k) sum += 2*k;

token2

University of Toronto

Language Specification: Scanner & Parser

• Scanner
– Divides program into sentences and tokens. Checks identifier format.

17

sum = 0;
for (k=1; k <= n; ++k)

sum += 2*k;

sum = 0;for (k=1; k <= n; ++k) sum += 2*k;

token3

University of Toronto

Language Specification: Scanner & Parser

• Scanner
– Divides program into sentences and tokens. Checks identifier format.

18

sum = 0;
for (k=1; k <= n; ++k)

sum += 2*k;

sum = 0;for (k=1; k <= n; ++k) sum += 2*k;

token4

University of Toronto

Language Specification: Scanner & Parser

• Scanner
– Divides program into sentences and tokens. Checks identifier format.

19

sum = 0;
for (k=1; k <= n; ++k)

sum += 2*k;

sum = 0;for (k=1; k <= n; ++k) sum += 2*k;

University of Toronto

Language Specification: Scanner & Parser

• Scanner
– Divides program into sentences and tokens. Checks identifier format.

• Parser
– Decides if the program is written according to language specification

20

sum = 0;
for (k=1; k <= n; ++k)

sum += 2*k;

sum = 0;for (k=1; k <= n; ++k) sum += 2*k;

University of Toronto

Language Specification: Scanner & Parser

• Scanner
– Divides program into sentences and tokens. Checks identifier format.

• Parser
– Decides if the program is written according to language specification

21

sum = 0;
for (k=1; k <= n; ++k)

sum += 2*k;

sum = 0;for (k=1; k <= n; ++k) sum += 2*k;

sum = 0;for (k=1; k <= n; ++k) sum += 2*k;

What this is?
Is this a valid assignment
Yes  Cool, let’s move forward
No  what can it be?... Cant figure out!  programmer error!

University of Toronto

Language Specification: Lexx & Yacc

• Lexx
– Lexical Analyzer
– Scanner Generator

• Yacc
– Yet Another Compiler Compiler
– Compiler Generator

22

Grammar Scanner
Lexx

Grammar Parser
Yacc

University of Toronto

Grammar: introduction
• Grammar:

– A Grammar is a formalism that describes which sequence of
terminals are meaningful in a PL. Formally, it is defined as a
quadruple (N, T, P, S) where:

• N is the set of symbols called Nonterminals
• T is the set of symbols called Terminals
• P is the set of productions
• S subsetof N is the nonterminal called the starting symbol

– Example:
G = (N,T,P,S) where N = {S} , T = {a,b},

P={S  aS, S  bS, S  }

• Production:
– A production is a rule of the form X  Y where X is a string of

symbols (terminals or nonterminals) containing at least one
nonterminal, and Y is a string of symbols (terminals or nonterminals)

23

University of Toronto

Grammar: context free

• A context free grammar (CFG) is a grammar in which |X| = 1,
i.e. X is a single nonterminal
– LHS: 1 nonterminal
– RHS: a sequence of terminals and nonterminals
– E.g.

• S  ab (CFG)
• SA  ab (non CFG)

• CFG is sufficient to describe most of the constructs in
programming languages

• Programming languages describable by CFG are recognizable
by push down automata (analogues to FSA with a stack)

24

University of Toronto

Language Specification : example

• Consider the ‘language’ of noun phrases
It was a sunny day.
We had a picnic in a lovely secluded park.

• A grammar for simple noun phrases:
noun-phrase → adjective-list noun
adjective-list → adjective adjective*

* Indicate zero or more times

25

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → adjective-list noun
adjective-list → adjective adjective*

26

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → adjective-list day
adjective-list → adjective adjective*

27

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → adjective-list day
adjective-list → adjective adjective*

28

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → adjective-list day
adjective-list → adjective adjective*

29

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → adjective-list day
adjective-list → sunny adjective*

30

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → adjective-list day
adjective-list → sunny adjective*

31

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → adjective-list day
adjective-list → sunny

32

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → sunny day
adjective-list → sunny

33

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → adjective-list noun
adjective-list → adjective adjective*

34

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → adjective-list noun
adjective-list → adjective adjective*

35

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → adjective-list noun
adjective-list → sunny adjective*

36

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → adjective-list noun
adjective-list → sunny adjective*

37

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → adjective-list noun
adjective-list → sunny adjective*

38

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → adjective-list noun
adjective-list → sunny adjective*

39

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → sunny noun
adjective-list → sunny adjective*

40

University of Toronto

Language Specification : example derivation

• It was a sunny day.
noun-phrase → sunny day
adjective-list → sunny adjective*

41

	Slide Number 1
	Slide Number 2
	Slide Number 3
	ML: structures
	ML: structures – cont’d
	ML: structures – cont’d
	ML: signatures
	ML: signatures
	ML: signatures
	ML: signatures
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Grammar: introduction
	Grammar: context free
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41

