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Components of an Imperative Language

• Data types

• Variables, Operators, & Expressions

• Assignment construct

• Iteration construct

• Branching construct

• Function construct

• Container construct
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• A language designer must provide a specific set of data types.

• Data types specification:
– Name
– Implementation
– Operations
– Exceptions/errors

Data types: introduction
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• Primitive data types:
– Mostly Supported by hardware
– Examples: integer, float,…

• Structured data types(SDT):
– Constructed as aggregation of other primitive data types.
– Either language defined data types or user defined data types

Data types: classification
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Data types: primitive
• Integer 

– Different sizes, hardware support
– Examples:

• Java: byte(8bit-signed), short(16-bit signed), int(32-bit signed),long(64-bit signed)
– Implementation:

• Most computers use twos complement

• Floating-point
– Difficult to represent by finite number of binary digits
– Examples:

• Java: float(32bit-IEEE754), double(64bit-IEEE754)
– Implementation:

• Most computers use IEEE754
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Data types: primitive cont’d
• Decimal

– Stores fixed number of decimal digits, with decimal point at a fixed position.
– Restricted range but more precise than floats.
– Implementation:

• Stored like character strings, using binary codes for digits (BCD)
• If hardware support is not provided, simulate in software

• Boolean
– ALGOL 60 is the first to introduce it.
– Only C/C++: numeric expressions can be used as conditionals
– Implementation:

• Stored in the smallest efficiently addressable cell of memory

• Character
– Implementation

• Byte or word
• ASCII or Unicode
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• Constructed as aggregation of other primitive data types.

• Strings
• Ordinal
• Arrays
• Associative Arrays
• Records
• Union
• Lists

Structured Data types
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SDT: Strings
• Strings 

– ASCII or Unicode
– Implementation:

• Static or dynamic length?
• Descriptors:

– Compile-time descriptor for static strings 

– Run-time descriptor for dynamic strings
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SDT: User-defined ordinal types
• Unordered collections of user defined distinct values 

• Classification:
– Enumeration:

• All of the possible values of a variable are enumerated in the definition
• E.g.

type DAYS is (Mon, Tue, Wed, Thu, Fri, Sat,  Sun); // Ada

– Subranges:
• A contiguous subsequence of an ordinal type. 
• E.g.

type uppercase = ‘A’ .. ‘Z’;               // Pascal
index        = 1..100;

subtype WEEKDAYS is DAYS       range Mon..Fri;         // Ada
subtype INDEX           is INTEGER range 1..100;
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SDT: Arrays
• Arrays:

– Homogenous arrays of elements in which each element is identified by its 
position, relative to the first element.

– Contiguous structured data type
– Operations:

• Initialization
– int list[] = { 4,5,6,7 }; // C and  C++
– int[] list = { 4,5,6,7 }; // Java
– Not all languages all initialization (e.g. Pascal, Modula-2)
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SDT: Arrays cont’d
• Multidimensional arrays:

– Row-major order    (Pascal, C/C++, Java, Ada, Modula-2)
• Layout as a sequence of consecutive rows, rightmost subscript varies fastest

• E.g.  

– Column-major order   (Fortran, Basic)
• Lay out as a sequence of consecutive columns, 

left most subscript varies fastest
• E.g.  
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SDT: Arrays cont’d
• Multidimensional array referencing:

• How do we compute address of A[i1][i2]?
Target_Address = Base_address
+ row_index *number _of _elements_in_row

* size_of_an_element
+  col_index  * size_of_an_element

A[4][3] = 20    // A is array of 5x5, int is 1 byte
Element_Address = 1000 +  (4 * 5 x 1)  + 3 * 1= 

= 1023
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SDT: Arrays cont’d
• Slices:

– A substructure of an array. 
– Note that this is not a new data type, it is just a mechanism for 

referencing part of an array
– E.g.: Fortran, Ada, Python

– Operations:
• Reference
• Assignment
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SDT: Associative Arrays
• An unordered collection of data elements that are indexed by an equal 

number of values called keys. 

• Each element of an associative array is in fact a pair of entities: key & 
value.

• Languages: 
– Java (Map),  Python (dictionary) 

• Implementation:
– Implemented by hash functions to speed the retrieval of the value.
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SDT: Records
• Records:

– Possibly heterogeneous aggregates where elements are referenced by 
name.

• A record can have a function defined within it
• Introduced by COBOL. C struct adopted it.

– Examples:
• COBOL

• Ada
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SDT: Records cont’d
• Reference:

– COBOL: 
• Name the field and enclosing record(s)
• E.g.:   LAST OF EMP-NAME OF EMP-REC

– Pascal:
• Uses dot notation, fully qualified reference.
• EMP_REC.EMP_NAME.LAST

• Operations:
– Pascal, Modula-2, C, C++: assignment.
– Ada: assignment and comparison
– C: field reference and pointer assignment

• Implementation:
– Fields are stored in adjacent memory cells.
– Offset address associated with each field.
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SDT: Sets
• A set type is one whose variables can store unordered collections of 

distinct values from some ordinal type called its base type.

• Example:
– Modula-2

setype1 = set of [blue,green,red];
setype2 = set of  [blue,red];
var setvar1 = setype1;

– Pascal
type colors     = (red , green , blue , yellow, orange, white);
colorset          = set of colors( );
var set1, set2 : colorset;

set1 := [red,blue,yellow,white]; // ok
set2 := [black,blue]; // error?

• Operations:
– in operator 

if(var in set1) ….
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SDT: Union
• Allow to store different type values at different times during program 

execution:
– Discriminated Union

• Has a tag field or discriminate that tells the current type value
• E.g.: Pascal, Modula-2, Ada

– Free union:
• No tag.
• E.g.: C, C++
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SDT: Union cont’d
• Example:

type shape = (circle, triangle, rectangle);
colors = (red, green, blue);
figure  = record

filled: boolean;
color:  colors;
case form: shape of

circle: (diameter: real);
triangle: (leftside: integer; rightside:integer;angle:real);
rectangle: (side1: integer; side2:integer)

end;
var myfigure : figure;
case myfigure.form of

circle:       begin
writeln("It is a circle", myfigure.diameter);

end;
triangle:     begin

writeln("It is a traingle" , myfigure.leftside);
end;

rectangle:  begin
writeln("It is a rectangle", myfigure.side1 );
end; 
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SDT: Lists
• An ordered sequence of data structures.

– Usually does not have a fixed length.
– Data type of each member may differ

• Examples:
– Python

lst = (1,2,3,4)
print lst[0]

• Implementation:
– Linked list storage management often used
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