
University of Toronto

Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 16

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

University of Toronto

Components of an Imperative Language

• Data types

• Variables, Operators, & Expressions

• Assignment construct

• Iteration construct

• Branching construct

• Function construct

• Container construct

2

University of Toronto

• A language designer must provide a specific set of data types.

• Data types specification:
– Name
– Implementation
– Operations
– Exceptions/errors

Data types: introduction

3

University of Toronto

• Primitive data types:
– Mostly Supported by hardware
– Examples: integer, float,…

• Structured data types(SDT):
– Constructed as aggregation of other primitive data types.
– Either language defined data types or user defined data types

Data types: classification

4

University of Toronto

Data types: primitive
• Integer

– Different sizes, hardware support
– Examples:

• Java: byte(8bit-signed), short(16-bit signed), int(32-bit signed),long(64-bit signed)
– Implementation:

• Most computers use twos complement

• Floating-point
– Difficult to represent by finite number of binary digits
– Examples:

• Java: float(32bit-IEEE754), double(64bit-IEEE754)
– Implementation:

• Most computers use IEEE754

5

University of Toronto

Data types: primitive cont’d
• Decimal

– Stores fixed number of decimal digits, with decimal point at a fixed position.
– Restricted range but more precise than floats.
– Implementation:

• Stored like character strings, using binary codes for digits (BCD)
• If hardware support is not provided, simulate in software

• Boolean
– ALGOL 60 is the first to introduce it.
– Only C/C++: numeric expressions can be used as conditionals
– Implementation:

• Stored in the smallest efficiently addressable cell of memory

• Character
– Implementation

• Byte or word
• ASCII or Unicode

6

University of Toronto

• Constructed as aggregation of other primitive data types.

• Strings
• Ordinal
• Arrays
• Associative Arrays
• Records
• Union
• Lists

Structured Data types

7

University of Toronto

SDT: Strings
• Strings

– ASCII or Unicode
– Implementation:

• Static or dynamic length?
• Descriptors:

– Compile-time descriptor for static strings

– Run-time descriptor for dynamic strings

8

University of Toronto

SDT: User-defined ordinal types
• Unordered collections of user defined distinct values

• Classification:
– Enumeration:

• All of the possible values of a variable are enumerated in the definition
• E.g.

type DAYS is (Mon, Tue, Wed, Thu, Fri, Sat, Sun); // Ada

– Subranges:
• A contiguous subsequence of an ordinal type.
• E.g.

type uppercase = ‘A’ .. ‘Z’; // Pascal
index = 1..100;

subtype WEEKDAYS is DAYS range Mon..Fri; // Ada
subtype INDEX is INTEGER range 1..100;

9

University of Toronto

SDT: Arrays
• Arrays:

– Homogenous arrays of elements in which each element is identified by its
position, relative to the first element.

– Contiguous structured data type
– Operations:

• Initialization
– int list[] = { 4,5,6,7 }; // C and C++
– int[] list = { 4,5,6,7 }; // Java
– Not all languages all initialization (e.g. Pascal, Modula-2)

10

University of Toronto

SDT: Arrays cont’d
• Multidimensional arrays:

– Row-major order (Pascal, C/C++, Java, Ada, Modula-2)
• Layout as a sequence of consecutive rows, rightmost subscript varies fastest

• E.g.

– Column-major order (Fortran, Basic)
• Lay out as a sequence of consecutive columns,

left most subscript varies fastest
• E.g.

11

University of Toronto

SDT: Arrays cont’d
• Multidimensional array referencing:

• How do we compute address of A[i1][i2]?
Target_Address = Base_address
+ row_index *number _of _elements_in_row

* size_of_an_element
+ col_index * size_of_an_element

A[4][3] = 20 // A is array of 5x5, int is 1 byte
Element_Address = 1000 + (4 * 5 x 1) + 3 * 1=

= 1023

12

University of Toronto

SDT: Arrays cont’d
• Slices:

– A substructure of an array.
– Note that this is not a new data type, it is just a mechanism for

referencing part of an array
– E.g.: Fortran, Ada, Python

– Operations:
• Reference
• Assignment

13

SDT: Associative Arrays
• An unordered collection of data elements that are indexed by an equal

number of values called keys.

• Each element of an associative array is in fact a pair of entities: key &
value.

• Languages:
– Java (Map), Python (dictionary)

• Implementation:
– Implemented by hash functions to speed the retrieval of the value.

14

Hashing
Function

key Index to Value

University of Toronto

SDT: Records
• Records:

– Possibly heterogeneous aggregates where elements are referenced by
name.

• A record can have a function defined within it
• Introduced by COBOL. C struct adopted it.

– Examples:
• COBOL

• Ada

15

University of Toronto

SDT: Records cont’d
• Reference:

– COBOL:
• Name the field and enclosing record(s)
• E.g.: LAST OF EMP-NAME OF EMP-REC

– Pascal:
• Uses dot notation, fully qualified reference.
• EMP_REC.EMP_NAME.LAST

• Operations:
– Pascal, Modula-2, C, C++: assignment.
– Ada: assignment and comparison
– C: field reference and pointer assignment

• Implementation:
– Fields are stored in adjacent memory cells.
– Offset address associated with each field.

16

SDT: Sets
• A set type is one whose variables can store unordered collections of

distinct values from some ordinal type called its base type.

• Example:
– Modula-2

setype1 = set of [blue,green,red];
setype2 = set of [blue,red];
var setvar1 = setype1;

– Pascal
type colors = (red , green , blue , yellow, orange, white);
colorset = set of colors();
var set1, set2 : colorset;

set1 := [red,blue,yellow,white]; // ok
set2 := [black,blue]; // error?

• Operations:
– in operator

if(var in set1) ….

17University of Toronto

University of Toronto

SDT: Union
• Allow to store different type values at different times during program

execution:
– Discriminated Union

• Has a tag field or discriminate that tells the current type value
• E.g.: Pascal, Modula-2, Ada

– Free union:
• No tag.
• E.g.: C, C++

18

University of Toronto

SDT: Union cont’d
• Example:

type shape = (circle, triangle, rectangle);
colors = (red, green, blue);
figure = record

filled: boolean;
color: colors;
case form: shape of

circle: (diameter: real);
triangle: (leftside: integer; rightside:integer;angle:real);
rectangle: (side1: integer; side2:integer)

end;
var myfigure : figure;
case myfigure.form of

circle: begin
writeln("It is a circle", myfigure.diameter);

end;
triangle: begin

writeln("It is a traingle" , myfigure.leftside);
end;

rectangle: begin
writeln("It is a rectangle", myfigure.side1);
end;

19

University of Toronto

SDT: Lists
• An ordered sequence of data structures.

– Usually does not have a fixed length.
– Data type of each member may differ

• Examples:
– Python

lst = (1,2,3,4)
print lst[0]

• Implementation:
– Linked list storage management often used

20

	Slide Number 1
	Components of an Imperative Language
	Slide Number 3
	Slide Number 4
	Data types: primitive
	Data types: primitive cont’d
	Slide Number 7
	SDT: Strings
	SDT: User-defined ordinal types
	SDT: Arrays
	SDT: Arrays cont’d
	SDT: Arrays cont’d
	SDT: Arrays cont’d
	SDT: Associative Arrays
	SDT: Records
	SDT: Records cont’d
	SDT: Sets
	SDT: Union
	SDT: Union cont’d
	SDT: Lists

