
University of Toronto

Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 17

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

University of Toronto

Pointers
• Variables referencing memory address or NIL/NULL

– PL/I is the first high-level language to have pointer variables

• Operations:
– Assignment to memory address (allocation)

• Note that this could be done with/without allocation
• E.g. // C lang

– Reference to value stored in memory cell
• E.g.

– Release of memory address (de-allocation)
• Ada, ALGOL 68: no explicit de-allocation

2

1461

1461

University of Toronto

Pointers cont’d
• Implementation:

– Usually 2 or 4 bytes
– Hardware restrictions (e.g. Intel architecture)
– Note that you can have pointer to pointer… to value

3

146124013003

2401 1461

University of Toronto

Pointers cont’d
• Why are pointers problematic?

– Type checking:
• PL/I allowed pointers to point to any type of object!

– Dangling Reference:
• Storage pointed to is freed, but pointer is not set to null.
• Then, you are able to access storage whose value are not meaningful.

– Garbage:
• Pointer itself is freed (perhaps by execution going out of scope) but heap

locations pointed to are not freed
• Then, there is no way to access this heap storage

– Memory leaks:
• Gradual loss of available computer memory when a program repeatedly fails

to return memory that it has obtained for temporary use.
• Then, the available memory for that application becomes exhausted and the

program can no longer function.

What can we do about pointer problems?

4

University of Toronto

Pointers cont’d
• Why are pointers problematic?

– Type checking:
• PL/I allowed pointers to point to any type of object!

– Dangling Reference:
• Storage pointed to is freed, but pointer is not set to null.
• Then, you are able to access storage whose value are not meaningful.

– Garbage:
• Pointer itself is freed (perhaps by execution going out of scope) but heap

locations pointed to are not freed
• Then, there is no way to access this heap storage

– Memory leaks:
• Gradual loss of available computer memory when a program repeatedly fails

to return memory that it has obtained for temporary use.
• Then, the available memory for that application becomes exhausted and the

program can no longer function.

What can we do about pointer problems?

5

University of Toronto

Pointers cont’d
• Why are pointers problematic?

– Type checking:
• PL/I allowed pointers to point to any type of object!

– Dangling Reference:
• Storage pointed to is freed, but pointer is not set to null.
• Then, you are able to access storage whose value are not meaningful.

– Garbage:
• Pointer itself is freed (perhaps by execution going out of scope) but heap

locations pointed to are not freed
• Then, there is no way to access this heap storage

– Memory leaks:
• Gradual loss of available computer memory when a program repeatedly fails

to return memory that it has obtained for temporary use.
• Then, the available memory for that application becomes exhausted and the

program can no longer function.

What can we do about pointer problems?

6

University of Toronto

Pointers cont’d
• Why are pointers problematic?

– Type checking:
• PL/I allowed pointers to point to any type of object!

– Dangling Reference:
• Storage pointed to is freed, but pointer is not set to null.
• Then, you are able to access storage whose value are not meaningful.

– Garbage:
• Pointer itself is freed (perhaps by execution going out of scope) but heap

locations pointed to are not freed
• Then, there is no way to access this heap storage

– Memory leaks:
• Gradual loss of available computer memory when a program repeatedly fails

to return memory that it has obtained for temporary use.
• Then, the available memory for that application becomes exhausted and the

program can no longer function.

What can we do about pointer problems?

7

Pointers cont’d
• Tombstones:

– Add an extra memory location that points to the value
– Pointers only point to tombstones, never to value
– When pointer is de-allocated, do not delete tombstone
– Problems:

• Expensive in time because of extra indirection
• Expensive in space because they are never deleted until program

exists!

8University of Toronto

Pointers cont’d
• Locks-and-keys:

– Associate a key with the pointer and a lock with corresponding value
– Access is granted if key match lock

int * pInt;
int X = 10;
pInt = &X; // this will succeed if lock of X and that of pInt match

9University of Toronto

University of Toronto

Pointers cont’d
• Garbage Collection(GC):

– An automatic memory management scheme implemented by the runtime
environment

– Analyzes usage of memory and recover pieces of storage no longer
reachable from user pointers and references

– Pros:
• Simplify programming,
• Shorten development lifecycle (less memory problems…)

– Cons:
• Execution time cost traded for easier job for user
• Unsuitable for real time systems

– E.g.:
• Java, ML, Ada, Modula, Python

– Many gc algorithms (active research area)

10

University of Toronto

Pointers cont’d
• GC Algorithms:

– Reference Counting (Smart Pointers):
• Maintain total number of pointers to a storage block

– Each variable has an additional attribute (a counter) telling how many pointers are
pointing to that variable.

– Every time a pointer is disconnected, decrement counter by 1 and check for 0
– Every time a pointer is connected, increment the counter by 1
– If counter is 0, delete the variable.

• Problems:
– Costs extra memory and execution time for updates. Circular references
Problems:

• Example:

Vector vList;

vList = new Vector();

vList.addElement(new Integer(1));

calc(vList);
……..
vList = null;

public void calc(Vector vInput)
{

Vector vNew,vAlias;

vNew = new Vector();
vAlias = vInput;
….

}

vList-obj : 0

vList-obj : 1

vList-obj : 1

vList-obj : 1

vList-obj : 3
vNew-obj : 1

vList-obj : 0

vList-obj : 1
vNew-obj : 0×

×
11

University of Toronto

Pointers cont’d
• GC Algorithms:

– Mark and sweep GC:
• Sweep through entire memory looking for referenced blocks and free unused

blocks
• Problems:

– multi pass processing causes delay in execution of programs
• Example:

Vector vList;
vList = new Vector();
vList.addElement(new Integer(1));
calc(vList);
……..
vList = null;

vList

vAlias Integer-obj

Vector-obj vList

vAlias Integer-obj

Vector-obj
vList

Integer-obj

Vector-obj

1

1 2
3

2
3

public void calc(Vector vInput)
{

Vector vNew,vAlias;

vNew = new Vector();
vAlias = vInput;
….

}

vInput
vInput

vNew
vNew

×
× ×

×

12

University of Toronto

Pointers cont’d
• GC Algorithms:

– Languages with GC are unsuitable for real time programming….
public class foo
{

public foo()
{

StringBuffer strbufLocal;
strbufLocal = new StringBuffer();

for(int nIndex = 1; nIndex < 20000; nIndex++)
{
StringBuffer strbufTemp = new StringBuffer();
strbufTemp.append("x");
strbufLocal.append(strbufTemp);
int nLength = strbufTemp.length();
}

}
public static void main(String strarrArgs[])
{

foo f = new foo();
}

}

C:\>java -verbose:gc foo
[GC 511K->182K(1984K), 0.0208331 secs]
[GC 694K->196K(1984K), 0.0045478 secs]
[GC 708K->214K(1984K), 0.0026766 secs]

C:\>java -verbose:gc foo
[GC 511K->182K(1984K), 0.0209680 secs]
[GC 694K->196K(1984K), 0.0046308 secs]
[GC 708K->214K(1984K), 0.0026199 secs]

C:\>java -verbose:gc foo
[GC 511K->182K(1984K), 0.0206537 secs]
[GC 694K->196K(1984K), 0.0045754 secs]
[GC 708K->214K(1984K), 0.0026168 secs]

C:\>

13

University of Toronto

• Primitive types
– Integer, Float, Boolean, Char, Pointers

• Structured Types
– Strings, Ordinal, Arrays, Associative Arrays, Records, Union, Lists

• Object Type

• Class Type

• Function Type

Data types Summary

14

Object Type
• The language would have means to create an instance from an

encapsulated structure that has functions + attributes

• Object-Based languages refers to having objects without classes and
classical inheritance
– E.g. Ada 83, Modula-2, Javascript

15University of Toronto

Object Type
• Javascript:

// creating our own object
personObj=new Object();
personObj.firstname="John";
personObj.lastname="Doe";
personObj.age=50;
personObj.eyecolor="blue";

16University of Toronto

Object Type
• Javascript:

function person(firstname,lastname,age,eyecolor)
{

this.firstname=firstname;
this.lastname=lastname;
this.age=age;
this.eyecolor=eyecolor;

}

var myFather = new person("John","Doe",50,"blue");
var myMother = new person("Sally","Rally",48,"green");

17University of Toronto

Class Type
• Classes describe the rules by which objects behave; those objects,

described by a particular class, are known as "instances" of said class

• Subtypes
– If given type A is compatible with type B, then

A is a subtype of B
– Hence, one datatype can be more than one subtype
– Polymorphism

• E.g.

18University of Toronto

A

B

Shape

Rectangle Circle

Class Type

19University of Toronto

• Interfaces/protocols
– A definition of methods and values which the objects agree upon in

order to cooperate.
– A specification of those properties of a software component that other

components may rely upon
– E.g.

public interface Shape{
public abstract void draw(int x, int y);

}

University of Toronto

• Function types
– A type that allow an object to be invoked or called as if it were an ordinary

function

// Declaration of C sorting function
void sort (int [] itemlist, int numitems, int (*cmpfunc)(int*, int*));
...

// Callback function
int compare_function(item* A, item* B)
{

//……
//……

}

sort(itemlist, numitems, compare_function);

Function Type

University of Toronto

• Primitive types
– Integer, Float, Boolean, Char

• Structured Types
– Strings, Ordinal, Arrays, Associative Arrays, Records, Union, Lists

• Object Type

• Class Type

• Function Type

Data types Summary

21

Note: Don’t confuse data types with API data structures (BST, Graphs,…)

	Slide Number 1
	Pointers
	Pointers cont’d
	Pointers cont’d
	Pointers cont’d
	Pointers cont’d
	Pointers cont’d
	Pointers cont’d
	Pointers cont’d
	Pointers cont’d
	Pointers cont’d
	Pointers cont’d
	Pointers cont’d
	Slide Number 14
	Object Type
	Object Type
	Object Type
	Class Type
	Class Type
	Function Type
	Slide Number 21

