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Pointers
• Variables referencing memory address or NIL/NULL

– PL/I is the first high-level language to have pointer variables

• Operations:
– Assignment to memory address (allocation)

• Note that this  could be done with/without allocation
• E.g.  // C lang

– Reference to value stored in memory cell
• E.g.

– Release of memory address (de-allocation)
• Ada, ALGOL 68: no explicit de-allocation
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Pointers cont’d
• Implementation:

– Usually 2 or 4 bytes
– Hardware restrictions (e.g. Intel architecture)
– Note that you can have pointer to pointer… to value

3

146124013003

2401 1461



University of Toronto

Pointers cont’d
• Why are pointers problematic? 

– Type checking: 
• PL/I allowed pointers to point to any type of object!

– Dangling Reference: 
• Storage pointed to is freed, but pointer is not set to null.
• Then, you are able to access storage whose value are not meaningful.

– Garbage: 
• Pointer itself is freed (perhaps by execution going out of scope) but heap 

locations pointed to are not freed 
• Then, there is no way to access this heap storage

– Memory leaks: 
• Gradual loss of available computer memory when a program repeatedly fails 

to return memory that it has obtained for temporary use. 
• Then, the available memory for that application becomes exhausted and the 

program can no longer function.

What can we do about pointer problems?
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Pointers cont’d
• Tombstones:

– Add an extra memory location that points to the value
– Pointers only point to tombstones, never to value
– When pointer is de-allocated, do not delete tombstone
– Problems:

• Expensive in time because of  extra indirection
• Expensive in space because they are never deleted until program 

exists!
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Pointers cont’d
• Locks-and-keys:

– Associate a key with the pointer and a lock with corresponding value
– Access is granted if key match lock

int * pInt;
int X  = 10;
pInt = &X; // this will succeed if lock of X and that of pInt match
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Pointers cont’d
• Garbage Collection(GC):

– An automatic memory management scheme implemented by the runtime 
environment

– Analyzes usage of memory and recover pieces of storage no longer 
reachable from user pointers and references

– Pros:     
• Simplify programming, 
• Shorten development lifecycle (less memory problems…)

– Cons: 
• Execution time cost traded for easier job for user
• Unsuitable for real time systems

– E.g.: 
• Java, ML, Ada, Modula, Python

– Many gc algorithms (active research area)
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Pointers cont’d
• GC Algorithms:

– Reference Counting  (Smart Pointers):
• Maintain total number of pointers to a storage block

– Each variable has an additional attribute (a counter) telling how many pointers are 
pointing to that variable.

– Every time a pointer is disconnected, decrement counter by 1 and check for 0
– Every time a pointer is connected, increment the counter by 1
– If counter is 0, delete the variable. 

• Problems:
– Costs extra memory and execution time for updates. Circular references
Problems:

• Example:

Vector vList;

vList = new Vector( );

vList.addElement( new Integer(1));

calc( vList );
……..
vList = null;

public void calc(Vector vInput)
{

Vector vNew,vAlias;

vNew = new Vector();
vAlias = vInput;
….

}

vList-obj : 0

vList-obj : 1

vList-obj : 1

vList-obj : 1

vList-obj : 3
vNew-obj : 1

vList-obj : 0

vList-obj : 1
vNew-obj : 0×

×
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Pointers cont’d
• GC Algorithms:

– Mark and sweep GC:
• Sweep through entire memory looking for referenced blocks and free unused 

blocks
• Problems:

– multi pass processing causes delay in execution of programs
• Example:

Vector vList;
vList = new Vector( );
vList.addElement( new Integer(1));
calc( vList );
……..
vList = null; 

vList

vAlias Integer-obj

Vector-obj vList

vAlias Integer-obj

Vector-obj
vList

Integer-obj

Vector-obj

1

1 2
3

2
3

public void calc(Vector vInput)
{

Vector vNew,vAlias;

vNew = new Vector();
vAlias = vInput;
….

}

vInput
vInput

vNew
vNew

×
× ×

×

12



University of Toronto

Pointers cont’d
• GC Algorithms:

– Languages with GC are unsuitable for real time programming….
public class foo
{

public foo()
{

StringBuffer strbufLocal;
strbufLocal = new StringBuffer( );

for(int nIndex = 1; nIndex < 20000; nIndex++)
{
StringBuffer strbufTemp = new StringBuffer();
strbufTemp.append("x");
strbufLocal.append( strbufTemp );
int nLength = strbufTemp.length();
}

}
public static void main(String strarrArgs[])
{

foo f = new foo( );     
}

}

C:\>java -verbose:gc foo
[GC 511K->182K(1984K), 0.0208331 secs]
[GC 694K->196K(1984K), 0.0045478 secs]
[GC 708K->214K(1984K), 0.0026766 secs]

C:\>java -verbose:gc foo
[GC 511K->182K(1984K), 0.0209680 secs]
[GC 694K->196K(1984K), 0.0046308 secs]
[GC 708K->214K(1984K), 0.0026199 secs]

C:\>java -verbose:gc foo
[GC 511K->182K(1984K), 0.0206537 secs]
[GC 694K->196K(1984K), 0.0045754 secs]
[GC 708K->214K(1984K), 0.0026168 secs]

C:\>
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• Primitive types
– Integer,  Float, Boolean, Char, Pointers

• Structured Types
– Strings, Ordinal, Arrays, Associative Arrays, Records, Union, Lists

• Object Type

• Class Type

• Function Type

Data types Summary
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Object Type
• The language would have means to create an instance from an 

encapsulated structure that has functions + attributes

• Object-Based languages refers to having objects without classes and 
classical inheritance 
– E.g. Ada 83, Modula-2, Javascript
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Object Type
• Javascript: 

// creating our own object
personObj=new Object();
personObj.firstname="John";
personObj.lastname="Doe";
personObj.age=50;
personObj.eyecolor="blue";
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Object Type
• Javascript:

function person(firstname,lastname,age,eyecolor)
{

this.firstname=firstname;
this.lastname=lastname;
this.age=age;
this.eyecolor=eyecolor;

}

var myFather = new person("John","Doe",50,"blue");
var myMother = new person("Sally","Rally",48,"green");
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Class Type
• Classes describe the rules by which objects behave; those objects, 

described by a particular class, are known as "instances" of said class

• Subtypes 
– If given type A is compatible with type B, then 

A is a subtype of B
– Hence, one datatype can be more than one subtype
– Polymorphism

• E.g.
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A 

B

Shape

Rectangle Circle



Class Type

19University of Toronto

• Interfaces/protocols
– A definition of methods and values which the objects agree upon in 

order to cooperate.
– A specification of those properties of a software component that other 

components may rely upon
– E.g.

public interface Shape{
public abstract void draw( int x, int y);

}
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• Function types
– A type that allow an object to be invoked or called as if it were an ordinary 

function

// Declaration of C sorting function 
void sort (int [] itemlist, int numitems,  int (*cmpfunc)(int*, int*) );
...

// Callback function
int compare_function( item* A, item* B) 
{

//……
//……

}

sort( itemlist, numitems, compare_function);

Function Type
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Note: Don’t confuse data types with API data structures (BST, Graphs,…)
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