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• Function types
– A type that allow an object to be invoked or called as if it were an ordinary 

function
– E.g. Sorting an array containing a user defined type

// Declaration of C sorting function 
void sort (int [] itemlist, int numitems,  int (*cmpfunc)(item*, item*) );
...

// Callback function
int compare_function( item* A, item* B) 
{

//……
//……

}
.
sort( itemlist, numitems, compare_function);

Function Type
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• Function types
– A type that allow an object to be invoked or called as if it were an ordinary 

function
– E.g. using different sorting algorithm

// Declaration of C sorting function 
void bubblesort (int [] itemlist, int numitems,  int (*cmpfunc)(int*, int*) ) {

….
}
void quicksort (int [] itemlist, int numitems,  int (*cmpfunc)(int*, int*) ) {
….
}

void doSomething(….) {
...
func1(itemlist , numitems , bubblesort);
…
func2(itemlist , numitems , quicksort);

}

Function Type

void func1(….,sortfunc ) {

sortfunc(itemlist,numitems)

}
void func2(….,sortfunc ) {

sortfunc(itemlist,numitems)

}
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• Primitive types
– Integer,  Float, Boolean, Char

• Structured Types
– Strings, Ordinal, Arrays, Associative Arrays, Records, Union, Lists

• Object Type

• Class Type

• Function Type

Data types Summary
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Note: Don’t confuse data types with API data structures (BST, Graphs,…)
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Type Conversions
• Often want to write expressions that are mixed mode (contain 

operands of more than one type)
real  +  integer

• This implies a need to convert one type to another so the 
expression can be evaluated
– coercion is implicit conversion, done automatically by the compiler

• implies semantics that define rules for determining type to convert to 
from operands

• problem is loss of error detection
– casts are explicit conversions specified by the programmer

• can lead to very clumsy expressions if doing a lot of mixed mode 
expressions

int (Index); // Ada and Python
(int) Index; // C and Java

5



University of Toronto

Type Conversions  - cont’d
• Whether implicit or explicit, conversions can be

– widening
• convert to a type with a greater representation range

– although perhaps with a loss of precision
• integer  real

– narrowing
• convert to a type with a more restricted range
• double precision  real

– promoting
• convert to a type with additional semantic information
• integer  character e.g.   NewChar = chr(IntValue)

– demoting
• strip away semantic information
• character  integer
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Type Conversion – examples
• PL/I allows coercion between almost any types

DCL A, B, C  INT;
if (A <= B <= C) then ...

• A <= B yields a Boolean value, which is a single bit 0 or 1
• convert bit to integer to compare to C
• bit <= C is true for any positive values of C

• Ada allows no coercion
– all conversions must be casts
– conversions are allowed between all numeric types
– other conversions only allowed between derived types that share an ancestor

type foo is new Boolean; 
type bar is new Boolean;
A: foo;  B:  bar;
A := foo(B);
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• What are the data types in the language?

• How is the data type declared?

• What operations are allowed on each data type?

• How to reference the data type?

• How is the data type implemented by the compiler/interpreter?

• What conversion rules exist for each datatype?

• What type checking does the language support?

Data Types Questions
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• Early programming languages: 
– Many data types
– Support large range of applications

• Modern programming languages:
– Few basic types and few basic data structure
– Allow a programmer to design complex structures for every need

Data types: how many should 
a language have?
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Components of an Imperative Language

• Data types

 Variables & Expressions

• Assignment construct

• Iteration construct

• Branching construct

• Function construct

• Container construct
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Names: design decisions
• How long can a name be? What characters can be used? Are connecters 

allowed?
– 30-60 max characters are most practical and used by most languages

• Are names case sensitive?
– Disadvantage: names that look alike are different
– Java and Modula-2 are the worst because predefined function names are mixed ( 

E.g. java.lang.Integer.parseInt( … )) You just have to remember that…

• What is the set of keyword vs. reserved words?
– Keywords: special only in certain contexts

• E.g. In Fortran    
REAL TEMP // ok
REAL = 3.4 // also ok!

– Reserved words: cannot be used by programmer as names
• E.g. In Java     double int = 5; //  error
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• A variable is an abstraction of a computer memory cell
– A variable is a not a name!

• A variable can be characterized by a sixtuple of attributes:
– Name
– Address:

• A variable may have different addresses at different times during execution
• A variable may have different addresses at different places in a program
• If two variable names can be used to access the same memory location, they 

are called aliases  (aliases are harmful to readability)
– Value:

• The content of the location with which the variable is associated.
– Type:

• Determines the range of values of variables and the set of operations that are 
defined for values of that type; in the case of floating point, type also determine 
the precision.

– Lifetime:
• It is the time during which the variable is bound to a particular memory cell

– Scope

Variables: introduction
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• How will the variables be used in statements and how they are 
represented in memory?

• Example:
// Java language
int b = 3;          
int a = b; 

Variables: value vs. reference

//  C language
int c    = 3;     
int b   = &c ;      
int a   = b; 

int* z ; 
z    = (int)malloc(size(int))
*z  = 10
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Value model Reference model

• Example:

b = 2
c = b

a = b + c

Variables: value vs. reference 

*b = 2
c = b

*a = *b + *c
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• Value-oriented
– C/C++, Pascal, Basic, Ada

• Reference-oriented
– C/C++, Scheme/ML (functional languages)
– Clu, Smalltalk

• Hybrids
– Algol-68, C/C++
– Java

• built-in types are values (int, float, double..)
• user-defined types are objects (i.e., references )

Variables: variations
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• Encoded variables

• E.g. Perl
– scalars starts with $

$numberOfRooms = 23;
– Arrays starts with @

@stringArray = ("This", "is", 'an', "array", 'of', "strings");
– Associative Array starts with %

%associativeArray = ("Jack A.", "Dec 2", "Joe B.", "June 2", 
"Jane C.", "Feb 13");

Variables: variations
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Binding: introduction

• A binding is an association between two things, such as a name and
the thing it names.
– E.g.

int x; // for this to work the compiler must bind a memory 
// cell (that is sufficient to hold an integer) with the 
// identifier x so later on the programmer can  write 

x = 5;

• The binding time is the point at which a binding is created or, more 
generally, the point at which any implementation decision is made.
• When will the name bind to the value?
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Binding: variables to storage

• Binding creation/allocation:
– Getting a (memory) cell from some pool of available (memory) cells and 

establishing an association between it a specific variable

• Binding destruction/de-allocation:
– Putting a (memory) cell back into the pool and destroying the association 

between it and the variable.

• Binding lifetime:
– The period of time from creation of a binding to its destruction
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Binding: when?
• During language design

– E.g.: In Pascal, % operator is bound to mod operation

• During language implementation
– E.g. In Java, data type double is bound to certain range

• At compile time
– E.g. In Java, int x; x is bound to particular data type (integer)

• When linking
– E.g. A call to subprogram foo in a separate library (.dll / .lib / .so) is bound to 

the subprogram code

• At load time
– E.g. In C, a variable may be bound to a storage cell when the program is loaded 

• At run time
– E.g. In C++, a variable may be bound to a storage cell after the program is 

loaded (using pointers).
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Binding: classification
• Static vs. Dynamic:

– The terms static and dynamic are generally used to refer to things bound 
before run time and at run time, respectively.

– Static binding:
• Can mean many different times (e.g., language design, compile time, etc.).

– Dynamic binding:
• Generally referring to binding times such as when variable values are 

bound to variables. 
• Advantage: flexibility
• Disadvantage: High cost, Type error detection by the compiler is difficult
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Type Checking
• It is the activity of ensuring that the operands of an operator are of 

compatible types:
– Subprograms are considered as operators
– A compatible type is one that is either legal for the operator or is allowed 

under language rules to be implicitly converted to a legal type:
• E.g. 

float R  = (float)10; // valid in most languages 
int X     = (int)10.5; // invalid in most languages

• Type error:
– It is an attempt to apply  a function to an argument of the wrong type
– E.g.   

int X =  java.lang.StrictMath.round( “nancy”); 
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Type Checking
• Type checking depends on binding:

– Static type checking: if all bindings of variables are done at compile type, 
then type checking can be done statically.

– Dynamic type checking: if some bindings of variables are done at run time, 
then type checking will be for thoese variables dynamically, i.e. when the 
program is running.
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Type Checking: classification
• Strongly typed language: 

– It is one in which each name in a program in the language has a single type 
associated with it, and that type is known at compile time (i.e. statically bound).

– E.g.: ML, Pascal, Ada 

• Not-Strongly typed language: 
– It is one in which variable types may be known but the storage location to which 

it is bound may store values of different types at different times.
– E.g.: C, C++, Fortran

• Weakly typed language: 
– It is one in which a name in a program in the language can change the type 

associated with it during run time and type checking is 
– E.g.: Basic, Perl, Python
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Components of an Imperative Language

• Data types

• Variables

 Operators & Expressions

• Iteration construct

• Branching construct

• Function construct

• Container construct
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Operators & Expressions

• Mathematical operators

• Logical operators

• Bitwise operators

• User-defined operators
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Mathematical & Logical Operators

• Precedence rules
– Norm: respect mathematical precedence
– Force evaluation of specific terms using ( )
– E.g.    (x + y) * z

vs.
x + (y * z)

• Short circuit evaluation
– E.g.     

if (X < 5 && foo() == 100)
vs.

if (foo() == 100 && X < 5)
- E.g.

if (X < 5 || foo() == 100)
vs.

if (foo() == 100 || X < 5)
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Bitwise Operators

• Low level operations supported directly by CPU

• Performed on register content

• Bitwise AND, Bitwise OR, Bitwise, Shift left, Shift right, 
XOR,…
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Bitwise Operators

• Why care?

• Languages: C/C++, PhP

• E.g.
// C language. left shifting is the equivalent of multiplying by 
// a power of two
int mult_by_pow_2(int number, int power) { 

return number<<power; 
} 
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