
University of Toronto

Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 18

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

University of Toronto

• Function types
– A type that allow an object to be invoked or called as if it were an ordinary

function
– E.g. Sorting an array containing a user defined type

// Declaration of C sorting function
void sort (int [] itemlist, int numitems, int (*cmpfunc)(item*, item*));
...

// Callback function
int compare_function(item* A, item* B)
{

//……
//……

}
.
sort(itemlist, numitems, compare_function);

Function Type

University of Toronto

• Function types
– A type that allow an object to be invoked or called as if it were an ordinary

function
– E.g. using different sorting algorithm

// Declaration of C sorting function
void bubblesort (int [] itemlist, int numitems, int (*cmpfunc)(int*, int*)) {

….
}
void quicksort (int [] itemlist, int numitems, int (*cmpfunc)(int*, int*)) {
….
}

void doSomething(….) {
...
func1(itemlist , numitems , bubblesort);
…
func2(itemlist , numitems , quicksort);

}

Function Type

void func1(….,sortfunc) {

sortfunc(itemlist,numitems)

}
void func2(….,sortfunc) {

sortfunc(itemlist,numitems)

}

University of Toronto

• Primitive types
– Integer, Float, Boolean, Char

• Structured Types
– Strings, Ordinal, Arrays, Associative Arrays, Records, Union, Lists

• Object Type

• Class Type

• Function Type

Data types Summary

4

Note: Don’t confuse data types with API data structures (BST, Graphs,…)

University of Toronto

Type Conversions
• Often want to write expressions that are mixed mode (contain

operands of more than one type)
real + integer

• This implies a need to convert one type to another so the
expression can be evaluated
– coercion is implicit conversion, done automatically by the compiler

• implies semantics that define rules for determining type to convert to
from operands

• problem is loss of error detection
– casts are explicit conversions specified by the programmer

• can lead to very clumsy expressions if doing a lot of mixed mode
expressions

int (Index); // Ada and Python
(int) Index; // C and Java

5

University of Toronto

Type Conversions - cont’d
• Whether implicit or explicit, conversions can be

– widening
• convert to a type with a greater representation range

– although perhaps with a loss of precision
• integer real

– narrowing
• convert to a type with a more restricted range
• double precision real

– promoting
• convert to a type with additional semantic information
• integer character e.g. NewChar = chr(IntValue)

– demoting
• strip away semantic information
• character integer

6

University of Toronto

Type Conversion – examples
• PL/I allows coercion between almost any types

DCL A, B, C INT;
if (A <= B <= C) then ...

• A <= B yields a Boolean value, which is a single bit 0 or 1
• convert bit to integer to compare to C
• bit <= C is true for any positive values of C

• Ada allows no coercion
– all conversions must be casts
– conversions are allowed between all numeric types
– other conversions only allowed between derived types that share an ancestor

type foo is new Boolean;
type bar is new Boolean;
A: foo; B: bar;
A := foo(B);

7

University of Toronto

• What are the data types in the language?

• How is the data type declared?

• What operations are allowed on each data type?

• How to reference the data type?

• How is the data type implemented by the compiler/interpreter?

• What conversion rules exist for each datatype?

• What type checking does the language support?

Data Types Questions

8

University of Toronto

• Early programming languages:
– Many data types
– Support large range of applications

• Modern programming languages:
– Few basic types and few basic data structure
– Allow a programmer to design complex structures for every need

Data types: how many should
a language have?

9

University of Toronto

Components of an Imperative Language

• Data types

 Variables & Expressions

• Assignment construct

• Iteration construct

• Branching construct

• Function construct

• Container construct

10

University of Toronto

Names: design decisions
• How long can a name be? What characters can be used? Are connecters

allowed?
– 30-60 max characters are most practical and used by most languages

• Are names case sensitive?
– Disadvantage: names that look alike are different
– Java and Modula-2 are the worst because predefined function names are mixed (

E.g. java.lang.Integer.parseInt(…)) You just have to remember that…

• What is the set of keyword vs. reserved words?
– Keywords: special only in certain contexts

• E.g. In Fortran
REAL TEMP // ok
REAL = 3.4 // also ok!

– Reserved words: cannot be used by programmer as names
• E.g. In Java double int = 5; // error

11

University of Toronto

• A variable is an abstraction of a computer memory cell
– A variable is a not a name!

• A variable can be characterized by a sixtuple of attributes:
– Name
– Address:

• A variable may have different addresses at different times during execution
• A variable may have different addresses at different places in a program
• If two variable names can be used to access the same memory location, they

are called aliases (aliases are harmful to readability)
– Value:

• The content of the location with which the variable is associated.
– Type:

• Determines the range of values of variables and the set of operations that are
defined for values of that type; in the case of floating point, type also determine
the precision.

– Lifetime:
• It is the time during which the variable is bound to a particular memory cell

– Scope

Variables: introduction

12

University of Toronto

• How will the variables be used in statements and how they are
represented in memory?

• Example:
// Java language
int b = 3;
int a = b;

Variables: value vs. reference

// C language
int c = 3;
int b = &c ;
int a = b;

int* z ;
z = (int)malloc(size(int))
*z = 10

13

University of Toronto

Value model Reference model

• Example:

b = 2
c = b

a = b + c

Variables: value vs. reference

*b = 2
c = b

*a = *b + *c

14

University of Toronto

• Value-oriented
– C/C++, Pascal, Basic, Ada

• Reference-oriented
– C/C++, Scheme/ML (functional languages)
– Clu, Smalltalk

• Hybrids
– Algol-68, C/C++
– Java

• built-in types are values (int, float, double..)
• user-defined types are objects (i.e., references)

Variables: variations

15

University of Toronto

• Encoded variables

• E.g. Perl
– scalars starts with $

$numberOfRooms = 23;
– Arrays starts with @

@stringArray = ("This", "is", 'an', "array", 'of', "strings");
– Associative Array starts with %

%associativeArray = ("Jack A.", "Dec 2", "Joe B.", "June 2",
"Jane C.", "Feb 13");

Variables: variations

16

University of Toronto

Binding: introduction

• A binding is an association between two things, such as a name and
the thing it names.
– E.g.

int x; // for this to work the compiler must bind a memory
// cell (that is sufficient to hold an integer) with the
// identifier x so later on the programmer can write

x = 5;

• The binding time is the point at which a binding is created or, more
generally, the point at which any implementation decision is made.
• When will the name bind to the value?

17

University of Toronto

Binding: variables to storage

• Binding creation/allocation:
– Getting a (memory) cell from some pool of available (memory) cells and

establishing an association between it a specific variable

• Binding destruction/de-allocation:
– Putting a (memory) cell back into the pool and destroying the association

between it and the variable.

• Binding lifetime:
– The period of time from creation of a binding to its destruction

18

University of Toronto

Binding: when?
• During language design

– E.g.: In Pascal, % operator is bound to mod operation

• During language implementation
– E.g. In Java, data type double is bound to certain range

• At compile time
– E.g. In Java, int x; x is bound to particular data type (integer)

• When linking
– E.g. A call to subprogram foo in a separate library (.dll / .lib / .so) is bound to

the subprogram code

• At load time
– E.g. In C, a variable may be bound to a storage cell when the program is loaded

• At run time
– E.g. In C++, a variable may be bound to a storage cell after the program is

loaded (using pointers).
19

University of Toronto

Binding: classification
• Static vs. Dynamic:

– The terms static and dynamic are generally used to refer to things bound
before run time and at run time, respectively.

– Static binding:
• Can mean many different times (e.g., language design, compile time, etc.).

– Dynamic binding:
• Generally referring to binding times such as when variable values are

bound to variables.
• Advantage: flexibility
• Disadvantage: High cost, Type error detection by the compiler is difficult

20

University of Toronto

Type Checking
• It is the activity of ensuring that the operands of an operator are of

compatible types:
– Subprograms are considered as operators
– A compatible type is one that is either legal for the operator or is allowed

under language rules to be implicitly converted to a legal type:
• E.g.

float R = (float)10; // valid in most languages
int X = (int)10.5; // invalid in most languages

• Type error:
– It is an attempt to apply a function to an argument of the wrong type
– E.g.

int X = java.lang.StrictMath.round(“nancy”);

21

University of Toronto

Type Checking
• Type checking depends on binding:

– Static type checking: if all bindings of variables are done at compile type,
then type checking can be done statically.

– Dynamic type checking: if some bindings of variables are done at run time,
then type checking will be for thoese variables dynamically, i.e. when the
program is running.

22

University of Toronto

Type Checking: classification
• Strongly typed language:

– It is one in which each name in a program in the language has a single type
associated with it, and that type is known at compile time (i.e. statically bound).

– E.g.: ML, Pascal, Ada

• Not-Strongly typed language:
– It is one in which variable types may be known but the storage location to which

it is bound may store values of different types at different times.
– E.g.: C, C++, Fortran

• Weakly typed language:
– It is one in which a name in a program in the language can change the type

associated with it during run time and type checking is
– E.g.: Basic, Perl, Python

23

University of Toronto

Components of an Imperative Language

• Data types

• Variables

 Operators & Expressions

• Iteration construct

• Branching construct

• Function construct

• Container construct

24

University of Toronto

Operators & Expressions

• Mathematical operators

• Logical operators

• Bitwise operators

• User-defined operators

25

University of Toronto

Mathematical & Logical Operators

• Precedence rules
– Norm: respect mathematical precedence
– Force evaluation of specific terms using ()
– E.g. (x + y) * z

vs.
x + (y * z)

• Short circuit evaluation
– E.g.

if (X < 5 && foo() == 100)
vs.

if (foo() == 100 && X < 5)
- E.g.

if (X < 5 || foo() == 100)
vs.

if (foo() == 100 || X < 5)

26

University of Toronto

Bitwise Operators

• Low level operations supported directly by CPU

• Performed on register content

• Bitwise AND, Bitwise OR, Bitwise, Shift left, Shift right,
XOR,…

27

University of Toronto

Bitwise Operators

• Why care?

• Languages: C/C++, PhP

• E.g.
// C language. left shifting is the equivalent of multiplying by
// a power of two
int mult_by_pow_2(int number, int power) {

return number<<power;
}

28

	Slide Number 1
	Function Type
	Function Type
	Slide Number 4
	Type Conversions
	Type Conversions - cont’d
	Type Conversion – examples
	Slide Number 8
	Slide Number 9
	Components of an Imperative Language
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Components of an Imperative Language
	Operators & Expressions
	Mathematical & Logical Operators
	Bitwise Operators
	Bitwise Operators

