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User-defined Operators

• Operators such as +,-,*,… are defined for the language 
types

• Some languages enable the programmer to add new 
semantics for existing operators

• Enhances the writeability of the program but makes 
readability slightly harder
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User-defined Operators
class Cube { // C++ 

public:
Cube::Cube(float inx, float iny, float inz);
Cube operator+ (const Cube &rhs); 
float Cube::getX();
float Cube::getY();
float Cube::getZ();

private:
float x;
float y;
float z;

};

Cube::Cube(float inx, float iny, float inz) {
x = inx; y = iny; z = inz;

}
Cube Cube::operator+ (const Cube & rhs) {

float newx;
if (x > rhs.x)   newx = x
else  newx = rhs.x; ……
return Cube(newx,newy,newz);

}
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int main () {
Cube Compaq      = Cube(33.0,17.0,3.0);
Cube Powerbook = Cube(39.0,16.0,1.8);
Cube Combo    = Compaq + Powerbook;

}
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User-defined Operators
class Car: # Python

def __init__(self,Brand,EngineSerial,carclr):
self.Brand    = Brand        
self.Serial   = EngineSerial
self.carclr   = carclr

def __eq__(self,rhs):
return self.Serial == rhs.Serial

if __name__ == "__main__":
car1 = Car("Honda",111,"white")
car2 = Car("Honda",111,"red")
if car1 == car2:

print "they are equal"
else:

print "they are not equal"
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• Syntax:
X  = <expression>
X := <expression>
X <- <expression>

• Semantics
– Evaluate right hand side first, the result is assigned to left hand side
– Make left hand side and right hand side equal

• With operator overloading, assignment gets a little bit 
more complicated 

Assignment Statement
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• Assuming = operator is implemented for class Person

Assignment Statement
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X = new Person(“John”)

Phoneslst

Y = X
Phoneslst

John John

X = new Person(“John”)

Phoneslst

Y = X
Phoneslst

John John

Shallow Copy

Deep Copy
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• With operator overloading, assignment gets a little bit 
more complicated 

• Deep copy is very powerful but very expensive.
– E.g. a data structure with 1Mn nodes

X = Y // means creating another 1Mn nodes

Assignment Statement
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• Syntax:
X,Y  = Y,X

• Semantics
– Swap X and Y
– Equivalent to 

temp = X
X       = Y
Y       = temp

• E.g. 
– Python

Assignment Statement Variations
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• Syntax:
X,Y,Z  = 10,20,30

• Semantics
– Multiple assignment in one statement
– Left most term in right side is evaluated first

• E.g.
X,Y,Z = 10,X+2,Y+3
// after evaluation X = 10, Y = 12, Z = 15

Assignment Statement Variations
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• What rules exist for naming variables?

• Which binding type the language supports?

• Does the language support short circuit evaluation?

• Does the language support bit-wise operators?

• Does the language support user-defined operators?

• If Assignment is overloaded for complex data structured of the 
language, is it shallow or deep copying?

Variables, Operators & Expressions 
Questions
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Components of an Imperative Language

• Data types

• Variables, operators & Expressions

• Iteration construct

• Branching construct

 Subprogram construct

• Container construct
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Subprograms: introduction

• Characteristics:
– A subprogram has a single entry point
– Caller is suspended during execution of the called subprogram
– Control always returns to the caller when the called subprogram’s 

execution terminates
– Master/slave model

• A subprogram can access data in two ways:
– Direct access to non local variables
– Parameter passing

• Why is it a good idea?
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Subprograms: introduction cont’d
• Advantages:

– Allow better reuse: 
• Savings from memory space to coding time
• The details of the program computation are hidden

– Increase readability of programs:
• Exposing their logical structure
• Hiding the small scale details
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Subprograms: introduction cont’d
• Each programming paradigm implement subprograms in a 

different way:

– Imperative: block of code that can be called 
• Procedure:

– Group user-specified statements in a single body
– Define a new statement in the language

• Function:
– Structurally resemble procedures. 
– Semantically built on mathematical functions; no side effects and return 

a value
– Much like user-defined operators

– Functional: lambda expression

– Logic: horn clause
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Subprograms: components
• Name

• Parameters (optionally with types)
– Formal Parameters (parameter)

• Local variable to the subprogram whose value is received from caller
– Actual Parameter (argument)

• Info passed from caller to callee

Subprogram header: name + formal parameters

• Body; a syntactic construct in the language, could be:
– Block, i.e. declarations and statements
– Expression
– Conjunction of terms

• Optional result (with/without a type)
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Subprograms: syntax examples
// Ada: function nested in a procedure
procedure Display_Even_Numbers is

< declarations>
function even (number:integer) return boolean is
begin

<statements>
end even;

begin
<statements>

end Display_Even_Numbers; 

// Fortran: subroutine
SUBROUTINE SUM(MATRIX,ROWS,COLS)

INTEGER ROWS,COLS
REAL        MATRIX(ROWS,COLS)

<statements>
RETURN
END

// Pascal: procedure
procedure count(k: array[1..5] of real);
const

<constant-declarations>
type

<type-declarations>
var

<variable-declarations>
// nested procedures and functions go here
begin

<statements>
end;

// Algol60: procedure
real procedure average(A,n);

real array A; integer n;
begin

real sum; sum:= 0;
for i := 1 step 1 until n do

sum := sum + A[i];
average:= sum/n;

end;

16



University of Toronto

Subprograms: implementation issues

• The general notion of a subprogram leaves a number of 
points unspecified:

– How to pass parameters when the subprogram is called?

– How to maintain local state and control information?

– How to access non-local names within a subprogram body?
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Subprograms: activation  
• Each execution of a subprogram is called an activation.

• Life-time of a subprogram:
– Begins when control enters activation (call)
– Ends when control returns from activation

University of Toronto 18



Subprograms: activation records 
• Run-time stack contains an activation record for each 

active procedure.

• Each activation record includes:
– Return address (within caller)
– Static link: a pointer to the activation record of the static parent, 

i.e. the activation record of the procedure that contains the 
definition of the owner of this record.

– Dynamic link: a pointer to the activation 
record of caller

– Storage for parameters
– Storage for local variables

How would you access the non-local variables?
University of Toronto 19



Subprograms: activation records 
class Window{

private Rectangle _rect;
private Graphics  _grx;

public void draw( ){
int nX = ......;
int nY = ......;

_rect.draw(nX,nY,_grx);
_icon.draw(img, _grx);
....

}

}

class Rectangle {
private int _nLength,

_nBreadth;

public void draw(int nX, 
int nY,

Graphics grx){
Color  clr = new Color(“Black”)
grx.drawLine( nX, nY, nX+_nLength, nY);

}
}
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Subprograms: activation records 
class Window{

private Rectangle _rect;
private Graphics  _grx;

public void draw( ){
int nX = ......;
int nY = ......;

_rect.draw(nX,nY,_grx);
_icon.draw(img, _grx);
....

}

}

class Rectangle {
private int _nLength,

_nBreadth;

public void draw(int nX, 
int nY,

Graphics grx){
Color  clr = new Color(“Black”)
grx.drawLine( nX, nY, nX+_nLength, nY);

}
}

_nLength
_nBreadth_rect

_grx
_icon
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Subprograms: activation records 
class Window{

private Rectangle _rect;
private Graphics  _grx;

public void draw( ){
int nX = ......;
int nY = ......;

_rect.draw(nX,nY,_grx);
_icon.draw(img, _grx);
....

}

}

class Rectangle {
private int _nLength,

_nBreadth;

public void draw(int nX, 
int nY,

Graphics grx){
Color  clr = new Color(“Black”)
grx.drawLine( nX, nY, nX+_nLength, nY);

}
}

_nLength
_nBreadth_rect

_grx
_icon

img
nY
nX
---
---
ret_addr
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Subprograms: activation records 
class Window{

private Rectangle _rect;
private Graphics  _grx;

public void draw( ){
int nX = ......;
int nY = ......;

_rect.draw(nX,nY,_grx);
_icon.draw(img, _grx);
....

}

}

class Rectangle {
private int _nLength,

_nBreadth;

public void draw(int nX, 
int nY,

Graphics grx){
Color  clr = new Color(“Black”)
grx.drawLine( nX, nY, nX+_nLength, nY);

}
}

clr
grx
nY
nX
---
---
1067

1067

_nLength
_nBreadth_rect

_grx
_icon

img
nY
nX
---
---
ret_addr
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Subprograms: activation tree  

• Activation tree:
– Shows flow of control from one activation to the other
– Root: main program. 
– Edges (control links): call from one procedure to another (left to right) 

control
– Leaves: procedures that call no other procedures
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Subprograms: activation tree example 

University of Toronto 25



University of Toronto

Subprograms: stack frames  

• Running a program corresponds to a traversal of one of its 
activation trees. 

• We represent the traversal of the tree using a stack
– Each item in the stack is called a frame
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A  B  C
• Some machines provide a memory stack as part of the architecture (e.g. VAX)

• Sometimes stacks are implemented via software convention (e.g. MIPS)

Subprograms: stack frames cont’d

A:  
CALL B

CALL C

C:  
RET

RET

B:  

A

A B

A B C

A B

A
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Subprograms : activation & run-time stack  

• On a call:
– Setup stack frame on top of run-time stack (current context)
– Do the real work of the procedure body

• On a return:
– Release stack frame and restore caller’s context (as new top of stack)
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Subprograms: big picture
• Sample memory layout 

– A program with 4 sub-programs: A, B, C and D

code runtime stack
Globals,
consts heap

(direction of growth)

0000 6024 6356 275000

A

B

C
D

Machine memory 
addresses
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