
University of Toronto

Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 19

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

University of Toronto

User-defined Operators

• Operators such as +,-,*,… are defined for the language
types

• Some languages enable the programmer to add new
semantics for existing operators

• Enhances the writeability of the program but makes
readability slightly harder

2

University of Toronto

User-defined Operators
class Cube { // C++

public:
Cube::Cube(float inx, float iny, float inz);
Cube operator+ (const Cube &rhs);
float Cube::getX();
float Cube::getY();
float Cube::getZ();

private:
float x;
float y;
float z;

};

Cube::Cube(float inx, float iny, float inz) {
x = inx; y = iny; z = inz;

}
Cube Cube::operator+ (const Cube & rhs) {

float newx;
if (x > rhs.x) newx = x
else newx = rhs.x; ……
return Cube(newx,newy,newz);

}
3

int main () {
Cube Compaq = Cube(33.0,17.0,3.0);
Cube Powerbook = Cube(39.0,16.0,1.8);
Cube Combo = Compaq + Powerbook;

}

University of Toronto

User-defined Operators
class Car: # Python

def __init__(self,Brand,EngineSerial,carclr):
self.Brand = Brand
self.Serial = EngineSerial
self.carclr = carclr

def __eq__(self,rhs):
return self.Serial == rhs.Serial

if __name__ == "__main__":
car1 = Car("Honda",111,"white")
car2 = Car("Honda",111,"red")
if car1 == car2:

print "they are equal"
else:

print "they are not equal"

4

University of Toronto

• Syntax:
X = <expression>
X := <expression>
X <- <expression>

• Semantics
– Evaluate right hand side first, the result is assigned to left hand side
– Make left hand side and right hand side equal

• With operator overloading, assignment gets a little bit
more complicated

Assignment Statement

5

University of Toronto

• Assuming = operator is implemented for class Person

Assignment Statement

6

X = new Person(“John”)

Phoneslst

Y = X
Phoneslst

John John

X = new Person(“John”)

Phoneslst

Y = X
Phoneslst

John John

Shallow Copy

Deep Copy

University of Toronto

• With operator overloading, assignment gets a little bit
more complicated

• Deep copy is very powerful but very expensive.
– E.g. a data structure with 1Mn nodes

X = Y // means creating another 1Mn nodes

Assignment Statement

7

University of Toronto

• Syntax:
X,Y = Y,X

• Semantics
– Swap X and Y
– Equivalent to

temp = X
X = Y
Y = temp

• E.g.
– Python

Assignment Statement Variations

8

University of Toronto

• Syntax:
X,Y,Z = 10,20,30

• Semantics
– Multiple assignment in one statement
– Left most term in right side is evaluated first

• E.g.
X,Y,Z = 10,X+2,Y+3
// after evaluation X = 10, Y = 12, Z = 15

Assignment Statement Variations

9

University of Toronto

• What rules exist for naming variables?

• Which binding type the language supports?

• Does the language support short circuit evaluation?

• Does the language support bit-wise operators?

• Does the language support user-defined operators?

• If Assignment is overloaded for complex data structured of the
language, is it shallow or deep copying?

Variables, Operators & Expressions
Questions

10

University of Toronto

Components of an Imperative Language

• Data types

• Variables, operators & Expressions

• Iteration construct

• Branching construct

 Subprogram construct

• Container construct

11

University of Toronto

Subprograms: introduction

• Characteristics:
– A subprogram has a single entry point
– Caller is suspended during execution of the called subprogram
– Control always returns to the caller when the called subprogram’s

execution terminates
– Master/slave model

• A subprogram can access data in two ways:
– Direct access to non local variables
– Parameter passing

• Why is it a good idea?

12

University of Toronto

Subprograms: introduction cont’d
• Advantages:

– Allow better reuse:
• Savings from memory space to coding time
• The details of the program computation are hidden

– Increase readability of programs:
• Exposing their logical structure
• Hiding the small scale details

13

University of Toronto

Subprograms: introduction cont’d
• Each programming paradigm implement subprograms in a

different way:

– Imperative: block of code that can be called
• Procedure:

– Group user-specified statements in a single body
– Define a new statement in the language

• Function:
– Structurally resemble procedures.
– Semantically built on mathematical functions; no side effects and return

a value
– Much like user-defined operators

– Functional: lambda expression

– Logic: horn clause

14

University of Toronto

Subprograms: components
• Name

• Parameters (optionally with types)
– Formal Parameters (parameter)

• Local variable to the subprogram whose value is received from caller
– Actual Parameter (argument)

• Info passed from caller to callee

Subprogram header: name + formal parameters

• Body; a syntactic construct in the language, could be:
– Block, i.e. declarations and statements
– Expression
– Conjunction of terms

• Optional result (with/without a type)

15

University of Toronto

Subprograms: syntax examples
// Ada: function nested in a procedure
procedure Display_Even_Numbers is

< declarations>
function even (number:integer) return boolean is
begin

<statements>
end even;

begin
<statements>

end Display_Even_Numbers;

// Fortran: subroutine
SUBROUTINE SUM(MATRIX,ROWS,COLS)

INTEGER ROWS,COLS
REAL MATRIX(ROWS,COLS)

<statements>
RETURN
END

// Pascal: procedure
procedure count(k: array[1..5] of real);
const

<constant-declarations>
type

<type-declarations>
var

<variable-declarations>
// nested procedures and functions go here
begin

<statements>
end;

// Algol60: procedure
real procedure average(A,n);

real array A; integer n;
begin

real sum; sum:= 0;
for i := 1 step 1 until n do

sum := sum + A[i];
average:= sum/n;

end;

16

University of Toronto

Subprograms: implementation issues

• The general notion of a subprogram leaves a number of
points unspecified:

– How to pass parameters when the subprogram is called?

– How to maintain local state and control information?

– How to access non-local names within a subprogram body?

17

Subprograms: activation
• Each execution of a subprogram is called an activation.

• Life-time of a subprogram:
– Begins when control enters activation (call)
– Ends when control returns from activation

University of Toronto 18

Subprograms: activation records
• Run-time stack contains an activation record for each

active procedure.

• Each activation record includes:
– Return address (within caller)
– Static link: a pointer to the activation record of the static parent,

i.e. the activation record of the procedure that contains the
definition of the owner of this record.

– Dynamic link: a pointer to the activation
record of caller

– Storage for parameters
– Storage for local variables

How would you access the non-local variables?
University of Toronto 19

Subprograms: activation records
class Window{

private Rectangle _rect;
private Graphics _grx;

public void draw(){
int nX =;
int nY =;

_rect.draw(nX,nY,_grx);
_icon.draw(img, _grx);
....

}

}

class Rectangle {
private int _nLength,

_nBreadth;

public void draw(int nX,
int nY,

Graphics grx){
Color clr = new Color(“Black”)
grx.drawLine(nX, nY, nX+_nLength, nY);

}
}

University of Toronto 20

Subprograms: activation records
class Window{

private Rectangle _rect;
private Graphics _grx;

public void draw(){
int nX =;
int nY =;

_rect.draw(nX,nY,_grx);
_icon.draw(img, _grx);
....

}

}

class Rectangle {
private int _nLength,

_nBreadth;

public void draw(int nX,
int nY,

Graphics grx){
Color clr = new Color(“Black”)
grx.drawLine(nX, nY, nX+_nLength, nY);

}
}

_nLength
_nBreadth_rect

_grx
_icon

University of Toronto 21

Subprograms: activation records
class Window{

private Rectangle _rect;
private Graphics _grx;

public void draw(){
int nX =;
int nY =;

_rect.draw(nX,nY,_grx);
_icon.draw(img, _grx);
....

}

}

class Rectangle {
private int _nLength,

_nBreadth;

public void draw(int nX,
int nY,

Graphics grx){
Color clr = new Color(“Black”)
grx.drawLine(nX, nY, nX+_nLength, nY);

}
}

_nLength
_nBreadth_rect

_grx
_icon

img
nY
nX

ret_addr

University of Toronto 22

Subprograms: activation records
class Window{

private Rectangle _rect;
private Graphics _grx;

public void draw(){
int nX =;
int nY =;

_rect.draw(nX,nY,_grx);
_icon.draw(img, _grx);
....

}

}

class Rectangle {
private int _nLength,

_nBreadth;

public void draw(int nX,
int nY,

Graphics grx){
Color clr = new Color(“Black”)
grx.drawLine(nX, nY, nX+_nLength, nY);

}
}

clr
grx
nY
nX

1067

1067

_nLength
_nBreadth_rect

_grx
_icon

img
nY
nX

ret_addr

University of Toronto 23

Subprograms: activation tree

• Activation tree:
– Shows flow of control from one activation to the other
– Root: main program.
– Edges (control links): call from one procedure to another (left to right)

control
– Leaves: procedures that call no other procedures

University of Toronto 24

Subprograms: activation tree example

University of Toronto 25

University of Toronto

Subprograms: stack frames

• Running a program corresponds to a traversal of one of its
activation trees.

• We represent the traversal of the tree using a stack
– Each item in the stack is called a frame

26

University of Toronto

A B C
• Some machines provide a memory stack as part of the architecture (e.g. VAX)

• Sometimes stacks are implemented via software convention (e.g. MIPS)

Subprograms: stack frames cont’d

A:
CALL B

CALL C

C:
RET

RET

B:

A

A B

A B C

A B

A

27

University of Toronto

Subprograms : activation & run-time stack

• On a call:
– Setup stack frame on top of run-time stack (current context)
– Do the real work of the procedure body

• On a return:
– Release stack frame and restore caller’s context (as new top of stack)

28

University of Toronto

Subprograms: big picture
• Sample memory layout

– A program with 4 sub-programs: A, B, C and D

code runtime stack
Globals,
consts heap

(direction of growth)

0000 6024 6356 275000

A

B

C
D

Machine memory
addresses

29

	Slide Number 1
	User-defined Operators
	User-defined Operators
	User-defined Operators
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Components of an Imperative Language
	Subprograms: introduction
	Subprograms: introduction cont’d
	Subprograms: introduction cont’d
	Subprograms: components
	Subprograms: syntax examples
	Subprograms: implementation issues
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Subprograms: big picture

