Principles of Programming Languages Lecture 2

Wael Aboulsaadat

wael@cs.toronto.edu

http://portal.utoronto.ca/

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoTReferences: Scheme by DybvigPL Concepts and Constructs by SethiConcepts of PL by SebestaML for the Working Prog. By PaulsonProg. in Prolog by Clocksin and MellishPL Pragmatics by Scott

Administrative: Waivers

- Course waivers
- CGPA waivers
 - Check with your department

Introduction to Logic Programming

Logic Programming (LP)

• Evolution:

Problem → Algorithm → Assembly Code → Machine Code |-----*Assembler*-----| |----*Imperative/functional Compiler/Interpreter*--|

|-----Logic Language Compiler/Interpreter------|

- E.g.:
 - Find X and Y such that 3 X + 2 Y = 1 and X Y = 4
 - Retrieve the telephone number of the person whose name is Tom Smith
 - The value of X equals the value of Y + 3

• Why LP?

- We can understand the meaning without knowing the "state" of the program
- A lot easier to say *what*, but not *how*.
- Direct manipulation of symbolic structures gives us it's power.
- **Popular LP languages:** *Prolog, SQL, Datalog*

LP: introduction – cont'd

• LP Characteristics:

- Not based on state modifications
- Not procedural in nature
- Does not have control flow (as we are used to thinking of it)

So, what does it have?

- A program in a logic programming language consists of a set of *declarations* related together using *predicate calculus*.
- An algorithm in a LP language = logic + control
 - Logic: programmer provides the "logic" which is what the program does.
 - Control: language run-time system provides the control (!)

• Problem Statement:

The Eng & Comp Sci library is part of the University of Toronto libraries. You were contacted by the library to develop a software for managing book loans. The library has 15,000 titles serving 40,000 students. An undergraduate student is allowed to borrow a book for up to 2 weeks and can borrow up to 5 books at a time. A graduate student is allowed to borrow a book for up to 4 weeks and can borrow up to 10 books. The library has a staff of 4 employees (librarians). An employee would be interested to know if a book is borrowed or in the library premise, if a book is a borrowed, how is borrowing it and when will it return.

• Software Design (for an Imperative Language):

• Software Design (for a logical language):

- The library has 15,000 titles	\rightarrow fact
- The library serves 40,000 students	\rightarrow fact
- The library has a staff of 4 librarians	\rightarrow fact
- An undergraduate student is allowed to	
borrow a book for up to 2 weeks	\rightarrow business rule
- An undergraduate can borrow up to	
5 books at a time	\rightarrow business rule
- A graduate student is allowed to	
borrow a book for up to 4 weeks	\rightarrow business rule
- A graduate can borrow up to 10 books	\rightarrow business rule
-* A student must be a UoT student	\rightarrow business rule
-* Only one student can borrow a book	\rightarrow business rule
- A librarian would be interested to know	
if a book is borrowed or in the library premis	$se \rightarrow$ functionality/query
- A librarian would be interested to know	
who is borrowing a book	\rightarrow functionality/query
- A librarian would be interested to know	
when will a book return.	\rightarrow functionality/query

LP: introduction – cont'd

- Predicate calculus allows us to represent facts, business rules, and queries as logical statements.
- By transforming a problem statement to a predicate calculus, we can try to proof a statement!, use induction and deduction, etc...

• Software Design (for a logical language):

LP: introduction – cont'd

• In logical programming, the model is

• How can we translate a problem statement to predicate calculus/logic?

LP: operators in predicate calculus

• Connectors:

Name	Book	Ex	Alt	Meaning
negation	7	٦a	! ~	not a
conjunction	\cap	a∩b	^ & ,	a and b
disjunction	\cup	a⊖b	\vee	a or b
equivalence		a≡b	I	a equiv to b
implication	\cap	a⊃b	\Rightarrow	a implies b
		a b	+: ⇒	b implies a

Precedence: \neg then $\cap \cup \equiv$ then \supset

Examples:

 $a \cap b \supset c$ $a^{\wedge} b \Rightarrow c$ $a \cup (b \cap c) \supset d$ $a \vee (b^{\wedge} c) \Rightarrow d$

• Quantifiers:

Universal ∀X.P For all X, P is true Existential ∃X.P There exists a value of X such that P is true (often leave out the ".")

> Examples: $\forall X.(teachingFaculty(X) \implies facultyMember(X))$ $\forall X.(teachingFaculty(X) \implies \exists Y.teaches(X,Y))$

LP: propositions in predicate calculus

- A proposition is a *logical statement* that may or may not be true.
- Consists of *objects* and their *relationships* to each other
- **Propositions are written in a** *mathematical function form*
 - E.g. A is a B or A is B == written as B(A)
- Propositions have no intrinsic semantics.
 - Do not supply meaning, just ids. We are actually interpreting them.

LP: atomic vs. compound propositions

• Atomic Proposition:

- Simplest form of logical statements
- Made up of two parts: *functor* and *parameters*
- E.g.
 - Mary is a woman woman(mary)
 - Tom and Mary are married
 - Scott teaches CSC341 in Summer

woman(mary)
married(tom,mary)
teaches(scott, CSC341, Summer)

Compound propositions:

- Two or more atomic propositions connected with *logical connectors*
- E.g.
 - Tom is either smart or dumb
 - Tom is not dumb
 - Tom is married to <u>someone</u>
 - Tom loves <u>everything</u>
 - Tom is married to <u>a</u> human female

 $(\exists X) [married(tom, X) \land female(X) \land human(X)]$

smart(tom) V dumb(tom)
¬dumb(tom)
(∃X) [married(tom,X)]
(∀X) [loves(tom,X)]

LP: implication in predicate calculus

Propositions related with each other by an *if-then* semantics, can be expressed using logical implication (denoted by →)

• Examples:

- If someone breaks the law, then she/he will be sent to jail or given a fine but not both.
 - P is breaks the law , Q is sent to jail , R is given a fine, v is a variable
 - $P(v) \rightarrow [(Q(v) \vee R(v)) \wedge \neg (Q(v) \wedge R(v))]$
- If December is a cold dark month then January is a cold dark month
 - P is dark, Q is cold, R is a month, d December and j January
 - $[P(d) \land Q(d) \land R(d)] \Rightarrow [P(j) \land Q(j) \land R(j)]$
 - Literally: *if December is cold, and December is dark and December is a month then January is cold, and January is dark and January is a month*
- There exists at least one x, such that x is a country and x is ruled by a Queen.
 - P is a country , Q ruled by a Queen , x is a variable
 - $(\exists x) (P(x) \land Q(x))$
 - Literally: *there is an X that is both P and Q*

LP: implication in predicate calculus

• Examples cont'd:

- Every person who is smart is also rich:
 - $(\forall X) [person(X) \land smart(X) \rightarrow rich(X)]$
- John has exactly one mother:
 - $(\exists X) [mother(John, X) \land mother(John, Y) \rightarrow Y = X]$
- All artists, except poor ones, are rich:
 - $(\forall X) [(artist(X) \land \neg poor(X)) \rightarrow rich(X)]$

LP: resolution in predicate calculus

- We would like to infer new propositions (e.g. facts) from some existing set of propositions.
- An inference rule that can be applied atomically is called a *resolution*
 - E.g. Given: $P1 \leftarrow P2$, $Q1 \leftarrow Q2$ $P1 \equiv Q2$ Alternatively: $T \leftarrow P2$, $Q1 \leftarrow T$ New rule: $Q1 \leftarrow P2$ New Set of Rules: $P1 \leftarrow P2$, $Q1 \leftarrow Q2$, $Q1 \leftarrow P2$
- Resolution gets more complex if variables/values are involved:
 - To use resolution with variables, we will need to find values for variables that allow matching to proceed.
 - E.g.

Given: $F(X,Y) \leftarrow P2(Y,X)$ Q1(foo) $\leftarrow F(foo, bar)$ Is this a New rule? Q1(foo) $\leftarrow P2(bar, foo)$