
University of Toronto

Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 21

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

University of Toronto

Components of an Imperative Language

• Data types

• Variables, operators & Expressions

• Iteration construct

• Branching construct

 Subprogram construct

• Container construct

2

University of Toronto

• Implementation models:
– Pass by value
– Pass by result
– Pass by value-result
– Pass by reference

• Modern languages support pass-by-value and pass-by-reference

• Concurrency problems with other models.

Subprograms: parameter passing

3

University of Toronto

• Pass by Value-Result

Subprograms: parameter passing

4

public class Counters extends Thread {
public int m = 5;
public int n = 3;

public void increment(int k, int j) {
k = k + 1;
j = j + 2;

}

public void run() {
increment(m , n);

}

}

public class User extends Thread {
public Counters _counters;

public User(Counters counters) {
_counters = counters;

}

public void run() {
int x = _counters.m + _counters.n;

}
}

public class App {

public static void main(String strarrArgs[]) {
Counters counters = new Counters();
User user = new User(counters);

counters.start();
user.start();

}
}

Result is
either 5/3 or 6/5
or 5/5 !!

University of Toronto

• Java
– Primitives: pass by value
– Mutable Objects: pass by reference

• Vector, List, Map, Hashtable, StringBuffer
– Immutable objects: pass by value

• String!

• Most modern languages are following Java’s model.

• Always check if the new language you are learning is passing
objects by value or reference (and can you chose between them as
in C/C++)

Subprograms: parameter passing

5

void dothis(String str){
String strInput = str;

}
….
lTime1 = System.currentTimeMillis();
for(int nIndex=0;nIndex < 1000000;nIndex++){

String strVal = "alkasdfasdfasdfdjflkasdjfl";
dothis(strVal);

}
lTime1 = System.currentTimeMillis();

University of Toronto

Scope: introduction

• The textual region of the program in which a specific set of variable
bindings are active is called the scope.

• Variables and Scope:
– A variable is said to be visible in a statement if it can be referenced in that

statement without a type error
– If a variable outlives its binding it's garbage
– If a binding outlives a variable it's a dangling reference

• Elaboration:
– It is the process of opening a new scope and creating appropriate bindings.
– Done upon entering a subroutine

6

University of Toronto

Subprograms: scope & blocks

• A block is a section of code in which local variables are allocated and
de-allocated at the start/end of the block.

• Examples:

fun cube x = x*x*x;

fun f (a::b::_) = a+b

| f [] = 0;

while (i < 0) {
int c = i*i*i;
p += c;
q += c;
i -= step;

}

(let ((a 1)
(b foo)
(c))
(setq a (* a a))
(bar a b c))

declare
LCL : FLOAT;
begin
...
end

7

University of Toronto

Subprograms: scope, blocks & nesting

• What happens if a block contains another block, and both have
definitions of the same name?

• Example:

let
val n = 1

in
let

val n = 2
in

n
end

end

8

University of Toronto

Subprograms: static scope
• Defines scope in terms of the lexical structure of the program

– A name begins life where it is declared and ends at the end of its block.
– A scope of a variable is known before execution

• Can be fully determined and bindings made at compile time
– E.g. C, C++, Pascal, Java, Fortran, Basic, Python, Perl,…

• E.g.
int main(){ // main scope

int k;
…….

}

void testfunc(){
int a; // a added to testfunc scope
for (int b=1; b<10; b++) { // b in scope

int c; // c added/enters loop scope
…

} // b,c leave/deleted-from scope
} // a leaves/delete-from scope

9

University of Toronto

Subprograms: static scope
• A name begins life where it is declared and ends at the end of its block.

• E.g.
{

int x = 0;
foo(x);
{

int x = 1;
bar(x);

}
bar(x);

}
Classic Block Scope Rule: When using static scope, the scope of a definition is the
block containing that definition, from the point of definition to the end of the block,
minus the scopes of any redefinitions of the same name in interior blocks
Hence, innermost scope overrides declarations from outer scopes.

10

University of Toronto

Subprograms: static scope
• A name begins life where it is declared and ends at the end of its block.

• E.g.
program test;
var a : integer;

procedure proc1;
var b : integer;
begin
end;

procedure proc2;
var a, c : integer;
begin

proc1;
end;

begin
proc2;

end.

in scope: b (from proc1), a (from test)

in scope: a, c (from proc2)

in scope: a (from test)

11

University of Toronto

Subprograms: static scope & lexical tree

12

• At compile time; The compiler/interpreter constructs a lexical tree
from the source code.

• E.g. assuming A and B are classes while C,D and E are methods

University of Toronto

Subprograms: static scope implementation
• At run time; The compiler/interpreter follow the static link in the

activation record

• E.g.

void testfunc(){ // nested scope
int a; // a enters scope;
for (int b=1; b<10; b++) { // b in scope

int c; // c enters scope
if(c < 10){ // d enters scope

int d = a + c;
} // d leaves scope

…
} // b,c leave scope

} // a leaves scope

13

University of Toronto

Subprograms: dynamic scope
• A dynamically-scoped identifier refers to the closest enclosing definition

in that specific activation

– Define scope based on the current state of program execution

– Scope cannot always be determined by reading the program as we do with static
scope

– E.g. some dialects of Lisp/APL and SNOBOL

14

University of Toronto

Subprograms: dynamic scope
• A dynamically-scoped identifier refers to the closest enclosing definition

in that specific activation

• E.g.
program test;
var a : integer;

procedure proc1;
var b : integer;
begin
end;

procedure proc2;
var a, c : integer;
begin

proc1;
end;

begin
proc2;

end.

in scope: b (from proc1) a, c (from proc2)

in scope: a, c (from proc2)

in scope: a (from test)

15

University of Toronto

Dynamic Scope: introduction
• Algorithm:

– Look first in the block in which the reference occurs, if that fails, look
in the calling subprogram, continue until successful or you reach the top
level block without finding a declaration.

• Example:

What is the output if scope was dynamic? 10 and 8
16

University of Toronto

Subprograms: dynamic scope
implementation

• The compiler/interpreter follow the dynamic link in the activation
record

• E.g.

17

University of Toronto

Dynamic vs. Static Scope

• What is the value of a using static scoping/dynamic scoping?
- Static: for +ve input (e.g. 5):- output is 1 , for -ve input:- output is also 1
- Dynamic: for +ve input (e.g. 5):- output is 2 , for -ve input:- output is also 1

18

University of Toronto

Dynamic Vs. Static Scope

Dynamic Scope
13 -1 achoo hello
13 99 goodbye hello
13 101 goodbye googoo
13 -555 goodbye hello
13 -555 goodbye hello

Static Scope
13 -1 achoo hello
1 99 goodbye ohm
1 101 achoo googoo
1 -555 achoo ohm
1 2 achoo ohm

19

University of Toronto

Subprograms: static vs. dynamic scope
• Dynamic scope makes it easier to access variables with lifetime, but

it is difficult to understand the semantics of code outside the
context of execution.
– No need for implicit parameter passing

• Static scope is more restrictive – therefore easier to read – but may
force the use of more subprogram parameters or global identifiers
to enable visibility when required.

20

University of Toronto

Subprograms: static vs. dynamic scope
• Static Scope:

– Defines scope in terms of the lexical structure of the program
– A scope of a variable is known before execution
– Static scopes can be fully determined and bindings made at compile time
– When writing a program one typically chooses the most recent, active

binding made at compile time
– Most compiled languages, C and Pascal included, employ static scope rules

• Dynamic scope:
– Define scope based on the current state/flow of program execution
– A scope of a variable is known at run time
– In this case the scope cannot always be determined by examining the

program because it is dependent on (dynamic) calling sequences
– E.g.:

• To resolve a reference, the most recent, active binding made at run time
is used

– Dynamic scope rules are usually encountered in interpreted languages

21

University of Toronto

Dynamic Scope: pros & cons
• Prior to the advent of modern object-oriented programming

techniques, dynamic scope facilitated the customization of subroutines
– Perform implicit parameter passing
– E.g. early versions of Lisp/Scheme.

• Problems with dynamic scope:
– It is hard to understand code with dynamic scope
– You can change what the program does just be renaming variables!
– Any subprogram you call, no matter where it is, can access your local

variables.
– It is slower to execute

• This is no longer widely considered good programming practice –
better solutions exist
– Use optional/default parameters (e.g., in C++)
– Use function/method overloading
– Use static variables

22

University of Toronto

Dynamic Scope Merits

23

GUI layer Logic layer Data layer

University of Toronto

Dynamic Scope Merits

24

GUI layer Logic layer Data layer

void showCCard(){
getCCard()

}

void showBills(){
getBills()

}

void deposit(){
doDeposit()

}

void getBills(){
loadBills();

}

void getCCard(){
loadCards();

}

void doDeposit(){
loadSaving();
incrementSaving();

}

void loadBills(){
}

void loadCards(){
}

void loadSaving(){
}

void updateSaving(){
}

University of Toronto

Dynamic Scope Merits

25

GUI layer Logic layer Data layer

void f1(){
f5()

}

void f2(){
f4()

}

void f3(){
f6()

}

void f4(){
f7();

}

void f5(){
f8();

}

void f6(){
f9();

}

void f7(){
}

void f8(){
}

void f9(){
}

University of Toronto

Dynamic Scope Problems

26

GUI layer Logic layer Data layer

void f1(){
int x = 10;
f5()

}
void f2(){
f4()

}

void f3(){
f6()

}

void f4(){
f7();

}

void f5(){
y = x / 2;
f8();
}
void f6(){

f9();
}

void f7(){
}

void f8(){
int m = y + x

}

void f9(){
}

Decreases readability of Programs

University of Toronto

Dynamic Scope Problems

27

GUI layer Logic layer Data layer

void f1(){
int x = 10;
f5()

}
void f2(){
f4()

}

void f3(){
f6()

}

void f4(){
f7();

}

void f5(){
y = x / 2;
f8();
}
void f6(){

f9();
}

void f7(){
}

void f8(){
}

void f9(){
}

Ok..

University of Toronto

Dynamic Scope Problems

28

GUI layer Logic layer Data layer

void f1(){
f5()
int x = 10;

}
void f2(){
f4()

}

void f3(){
f6()

}

void f4(){
f7();

}

void f5(){
y = x / 2;
f8();
}
void f6(){

f9();
}

void f7(){
}

void f8(){
}

void f9(){
}

Changing statement order affects compilation

Error!

University of Toronto

Aspect Oriented Programming
• Dynamic scope goal but a better approach

• Allowing the identification and separation of cross cutting
concerns

• What are cross cutting concerns?
• A concern is a particular set of behaviors needed by a computer

program
• cross-cutting concerns are aspects of a program which affect

other concerns.

29

University of Toronto

Cross cutting Concerns

30

GUI layer Logic layer Data layer

void f1(){
f5()

}

void f2(){
f4()

}

void f3(){
f6()

}

void f4(){
f7();

}

void f5(){
f8();

}

void f6(){
f9();

}

void f7(){
}

void f8(){
}

void f9(){
}

University of Toronto

Question: how can we identify related
pieces of code?

31

GUI layer Logic layer Data layer

void f1(){
f5()

}

void f2(){
f4()

}

void f3(){
f6()

}

void f4(){
f7();

}

void f5(){
f8();

}

void f6(){
f9();

}

void f7(){
}

void f8(){
}

void f9(){
}

University of Toronto

Aspect Oriented Programming
• Add separate code to document flow

32

void foo(char * a) {
printf("inside foo, a = %s\n", a);

}

void foo2() {
printf("in foo2, call foo\n");
foo("ABCDE");

}

int main() {
foo("abcde");
foo2();
return 0;

}

before(): call(void foo(char *)) && infunc(main) {
printf("aspect 1: call foo in main \n");

}

before(): call(void foo(char *)) && infunc(foo2) {
printf("aspect 2: call foo in foo2\n");

}

Foo.c
gcc foo.c

www.AspectC.net

Foo.acc
acc foo.c foo.acc

	Slide Number 1
	Components of an Imperative Language
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32

