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Components of an Imperative Language

• Data types

• Variables, operators & Expressions

• Iteration construct

• Branching construct

• Subprogram construct

 Container construct
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Container Construct
• Syntactical variations

- Prototype
- Implementation

• Binary variations
• Application
• Library
• Component
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Container Construct
• Syntactical variations

- Prototype & implementation
- Implementation

• C/C++ separates between prototype and implementation of code
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class HelloWorld {
public:

HelloWorld();
~HelloWorld();

public:
//Methods:
void on_button_clicked();

protected:
//Attributes
Button ok_button;

};

#include "hello.h"

HelloWorld::HelloWorld(){
// ….

}

HelloWorld::~HelloWorld(){
//…..

}

HelloWorld::ok_clicked(){
//….

}
hello.h hello.cpp
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Container Construct
• C/C++ separates between prototype and implementation of code

• Decreases writability: have to maintain 2 files per class/set of 
functions.
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class HelloWorld {
public:

HelloWorld();
~HelloWorld();

public:
//Methods:
void printMessage();

protected:
//Attributes
Button ok_button;

};

#include "hello.h"

HelloWorld::HelloWorld(){
// ….

}

HelloWorld::~HelloWorld(){
//…..

}

HelloWorld::printMessage(){
//….

}
hello.h hello.cpp App.cpp

#include "hello.h"

int main(){

HelloWorld hello;
hello.printMessage ();

}
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Container Construct
• Languages which separates prototype from implementation often 

force programmer to handle circular references – which will break 
compilation!  
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x.cppy.cpp

x.hy.h

App.cpp
#include “x.h“
#include “y.h"

#include “y.h"#include “x.h"

#include “x.h"#include “y.h"
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Container Construct
• Languages which separates prototype from implementation often 

force programmer to handle circular references – which will break 
compilation! 

• ifdef ensures that a file
is included by the compiler

only once
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hello.h

#ifndef HELLO
#define HELLO 
class HelloWorld {

public:
HelloWorld();
~HelloWorld();

public:
//Methods:
void printMessage();

protected:
//Attributes
Button ok_button;

};
#endif
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Container Construct
• Binary variations: Library

• A library is  a set of functions packaged in one file.  

• No main function/method. It can only be used from a program. You 
can’t run it!

• Libraries come in 2 variations: static or dynamic.
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Container Construct
• Binary variations: Library

• Static library
- Windows: .lib Linux: .a  (e.g. /usr/local/lib )
- Linked with the program during compilation. 

- Calls to function in lib is replaced with relative address of func in binary

- Compiler must support generating a static library from a set of 
functions (with no main function/method)
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Compiler

One executable
containing all binaries

program source

library 1 

library 2 

library source
Compiler

.a/.lib library binary file
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Container Construct
• Binary variations: Library

• Dynamic library
- Windows: .dll (c:/windows/system32), Linux:.so (/usr/lib), Mac: .dylib
- Loaded during runtime into the program space

- OS provides function to load library (Windows: LoadLibrary("x.dll"))
- Compiler must support a mechanism to do the following:
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library source
Compiler

.so/.dll library binary file

Memory

Total memory 
for  the 
executable

Executable

Harddisk

x.dllx.dll
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Container Construct
• Binary variations: Component

• Similar to library with meta information is added to binary to 
enable reflection

• Naming convention is enforced to identify set/get methods
• Examples: Microsoft COM components, JavaSoft JavaBeans

• Refer to reflection lecture for an example how Java supports this. 
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Compiler

Executable with
meta information 
about code

Component
source

binary

metainf
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Container Construct
• Binary variations: application

• Can either be native  or  virtual-machine  based

• Java/Microsoft .Net platform  vs. native C/C++/Fortran app
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Native
Assembly Code Intermediate

assembly-like code

Run-time
for platform X

Run-time
for platform Y

Native Application Virtual-Machine Application

E.g. jvm javaprog

E.g. cprog.exe
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Components of an Imperative Language

• Data types

• Variables, operators & Expressions

 Iteration construct

 Branching construct

• Subprogram construct

• Container construct
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• The repeated execution of a statement or compound statement 
is accomplished either by iteration or recursion, here we look at 
iteration, because recursion is subprogram control.

• An Iteration statement is one that causes a statement or 
collection of statements to be executed zero, one or more times.
– E.g. for( nIndex = 0; nIndex < 10; nIndex++)   // Java + C + C++

• General issues:
– How is iteration controlled?
– Where is the control mechanism in the loop?

• Types of iteration constructs:
– Counter controlled loops
– Logically controlled loops
– User controlled loops
– Data structures controlled loops

Control Statements: iteration
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• User controlled loops:
– Test the condition in the middle of the loop and break if false
– Language must provide break, continue or similar statement, why?
– E.g.

loop // Ada
if somevariable < somevalue

exit
end loop

Control Statements: iteration cont’d

while( true ){       // C++
if(somevariable < somevalue)

break;
}
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• Logically controlled loops:
– Execution of loop continues as long as certain logical condition is true
– Types:

• Pretest:
– Test the condition before entering the loop. Might not execute the loop.
– E.g. 

while( x < 10 ) do // Pascal
while(x < 10) // C/C++/Java

• Posttest:
– Test the condition at the end of the loop. Execute loop at least once.
– E.g. 

repeat // Pascal
…..
until ( x < 10 ); 

do{ // C
…..
}while (x < 10);

Control Statements: iteration cont’d
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• Counter controlled loops: 
– Execution of loop n times
– Loop variable: memory location where the count value is maintained
– Loop parameters: initial, terminal and stepsize
– E.g.

• Ada
for count in 1..10 loop

sum := sum + count;
end loop;

• Pascal      
for x := 1 to100 do
for x := 100 downto 1 do

• C/C++/Java      
for (Index = 0 ; nIndex < 10; nIndex++ )
for (nIndex1 = 0, nIndex2 = 0; nIndex1 < 10 & nIndex2 < 10;

nIndex1++, nIndex2++)

Control Statements: iteration cont’d
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• Data structures controlled loops:
– Loop is controlled by the number of elements in a data structure
– Control mechanism is a call to a function that returns the next element 

in some chosen order
– The loop variable is assigned the current element in the data structure
– Clu was the first to introduce

for i in from_to_by(first, last, step) do
…

end

– C copied

Control Statements: iteration cont’d

for ( ptr=header; ptr != NULL ; ptr=ptr->next  ) {      
// C for-loop can be used to create user defined iterator

}

18

head

ptr
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• Data structures controlled loops:
– Most new languages include this type of loop
– Enhances readability & writeability

// Perl
@names = (“John”, “Ted”, “Lee”);   
foreach $name(@name) {

print $name;
}

Control Statements: iteration cont’d
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#Python
lst = [10,20,30]
for num in lst:

print num
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• Provides the means of choosing between two or more execution 
paths in a program

• Issues:
– What is the form and type of the control expression?
– What is the selectable segment form?
– How should the meaning of nested selectors be specified?

• Types:
– Single way selection 
– Two-way selection 
– N-way selection

Control Statements: selection
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• Single way selectors:
– If the boolean expression is evaluated to true, do something.
– E.g.

IF (x < 10 )  // Fortran I 
print x

– Problem: can select one value only! 

Control Statements: selection cont’d
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• Two way selectors: 
– Pick one out of two execution paths
– <statement> could be single or compound
– E.g.

if( x < 10 ) then // Pascal
<statement>

else
<statement>

Control Statements: selection cont’d
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• N-way selectors:
– Pick one out of n execution paths
– E.g.

Pascal

C/C++/Java

Control Statements: selection cont’d
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• What are the selection statements in the language?
– What is the form and type of the expression that controls the selection?
– Can a single statement, a sequence of statements, or a compound 

statement be selected?
– How should unrepresented selector expression values be handled, if at 

all?
– Is execution flow through the structure restricted to include just a single 

selectable segment?

• What are the repetition statements in the language?
– Type and scope of the loop variable? 
– Value of the loop variable at loop termination?
– Can the loop variable be modified in the loop body?
– Should the test for loop completion be at the top or bottom of the loop?
– Should the loop parameters be evaluated only once, or once for every 

iteration?

Control Statements: issues to consider
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• Logic Language
– Prolog

• Functional languages
– Scheme and ML

• Principles of Imperative Programming Languages
– Grammar
– Data Types
– Variables,  operators & expressions
– Iteration constructs
– Branching constructs
– Subprogram constructs
– Container constructs

What Did We Cover? 
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Exam
• 4 Questions (100): Prolog(30), Scheme(20), ML(15), PL Concepts(35)

• 3 Hours. 15 pages (including cover page, empty page and an aid page 
at the end!)

• Examination Type D: 
Printed lecture slides and textbooks permitted.  No other aids are 
allowed.

• Sample questions. Office hours before exam. Stay tuned!

• Review the programming language (s) you have learned before……
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