
University of Toronto

Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 22

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

University of Toronto

Components of an Imperative Language

• Data types

• Variables, operators & Expressions

• Iteration construct

• Branching construct

• Subprogram construct

 Container construct

2

University of Toronto

Container Construct
• Syntactical variations

- Prototype
- Implementation

• Binary variations
• Application
• Library
• Component

3

University of Toronto

Container Construct
• Syntactical variations

- Prototype & implementation
- Implementation

• C/C++ separates between prototype and implementation of code

4

class HelloWorld {
public:

HelloWorld();
~HelloWorld();

public:
//Methods:
void on_button_clicked();

protected:
//Attributes
Button ok_button;

};

#include "hello.h"

HelloWorld::HelloWorld(){
// ….

}

HelloWorld::~HelloWorld(){
//…..

}

HelloWorld::ok_clicked(){
//….

}
hello.h hello.cpp

University of Toronto

Container Construct
• C/C++ separates between prototype and implementation of code

• Decreases writability: have to maintain 2 files per class/set of
functions.

5

class HelloWorld {
public:

HelloWorld();
~HelloWorld();

public:
//Methods:
void printMessage();

protected:
//Attributes
Button ok_button;

};

#include "hello.h"

HelloWorld::HelloWorld(){
// ….

}

HelloWorld::~HelloWorld(){
//…..

}

HelloWorld::printMessage(){
//….

}
hello.h hello.cpp App.cpp

#include "hello.h"

int main(){

HelloWorld hello;
hello.printMessage ();

}

University of Toronto

Container Construct
• Languages which separates prototype from implementation often

force programmer to handle circular references – which will break
compilation!

6

x.cppy.cpp

x.hy.h

App.cpp
#include “x.h“
#include “y.h"

#include “y.h"#include “x.h"

#include “x.h"#include “y.h"

University of Toronto

Container Construct
• Languages which separates prototype from implementation often

force programmer to handle circular references – which will break
compilation!

• ifdef ensures that a file
is included by the compiler

only once

7

hello.h

#ifndef HELLO
#define HELLO
class HelloWorld {

public:
HelloWorld();
~HelloWorld();

public:
//Methods:
void printMessage();

protected:
//Attributes
Button ok_button;

};
#endif

University of Toronto

Container Construct
• Binary variations: Library

• A library is a set of functions packaged in one file.

• No main function/method. It can only be used from a program. You
can’t run it!

• Libraries come in 2 variations: static or dynamic.

8

University of Toronto

Container Construct
• Binary variations: Library

• Static library
- Windows: .lib Linux: .a (e.g. /usr/local/lib)
- Linked with the program during compilation.

- Calls to function in lib is replaced with relative address of func in binary

- Compiler must support generating a static library from a set of
functions (with no main function/method)

9

Compiler

One executable
containing all binaries

program source

library 1

library 2

library source
Compiler

.a/.lib library binary file

University of Toronto

Container Construct
• Binary variations: Library

• Dynamic library
- Windows: .dll (c:/windows/system32), Linux:.so (/usr/lib), Mac: .dylib
- Loaded during runtime into the program space

- OS provides function to load library (Windows: LoadLibrary("x.dll"))
- Compiler must support a mechanism to do the following:

10

library source
Compiler

.so/.dll library binary file

Memory

Total memory
for the
executable

Executable

Harddisk

x.dllx.dll

University of Toronto

Container Construct
• Binary variations: Component

• Similar to library with meta information is added to binary to
enable reflection

• Naming convention is enforced to identify set/get methods
• Examples: Microsoft COM components, JavaSoft JavaBeans

• Refer to reflection lecture for an example how Java supports this.

11

Compiler

Executable with
meta information
about code

Component
source

binary

metainf

University of Toronto

Container Construct
• Binary variations: application

• Can either be native or virtual-machine based

• Java/Microsoft .Net platform vs. native C/C++/Fortran app

12

Native
Assembly Code Intermediate

assembly-like code

Run-time
for platform X

Run-time
for platform Y

Native Application Virtual-Machine Application

E.g. jvm javaprog

E.g. cprog.exe

University of Toronto

Components of an Imperative Language

• Data types

• Variables, operators & Expressions

 Iteration construct

 Branching construct

• Subprogram construct

• Container construct

13

University of Toronto

• The repeated execution of a statement or compound statement
is accomplished either by iteration or recursion, here we look at
iteration, because recursion is subprogram control.

• An Iteration statement is one that causes a statement or
collection of statements to be executed zero, one or more times.
– E.g. for(nIndex = 0; nIndex < 10; nIndex++) // Java + C + C++

• General issues:
– How is iteration controlled?
– Where is the control mechanism in the loop?

• Types of iteration constructs:
– Counter controlled loops
– Logically controlled loops
– User controlled loops
– Data structures controlled loops

Control Statements: iteration

14

University of Toronto

• User controlled loops:
– Test the condition in the middle of the loop and break if false
– Language must provide break, continue or similar statement, why?
– E.g.

loop // Ada
if somevariable < somevalue

exit
end loop

Control Statements: iteration cont’d

while(true){ // C++
if(somevariable < somevalue)

break;
}

15

University of Toronto

• Logically controlled loops:
– Execution of loop continues as long as certain logical condition is true
– Types:

• Pretest:
– Test the condition before entering the loop. Might not execute the loop.
– E.g.

while(x < 10) do // Pascal
while(x < 10) // C/C++/Java

• Posttest:
– Test the condition at the end of the loop. Execute loop at least once.
– E.g.

repeat // Pascal
…..
until (x < 10);

do{ // C
…..
}while (x < 10);

Control Statements: iteration cont’d

16

University of Toronto

• Counter controlled loops:
– Execution of loop n times
– Loop variable: memory location where the count value is maintained
– Loop parameters: initial, terminal and stepsize
– E.g.

• Ada
for count in 1..10 loop

sum := sum + count;
end loop;

• Pascal
for x := 1 to100 do
for x := 100 downto 1 do

• C/C++/Java
for (Index = 0 ; nIndex < 10; nIndex++)
for (nIndex1 = 0, nIndex2 = 0; nIndex1 < 10 & nIndex2 < 10;

nIndex1++, nIndex2++)

Control Statements: iteration cont’d

17

University of Toronto

• Data structures controlled loops:
– Loop is controlled by the number of elements in a data structure
– Control mechanism is a call to a function that returns the next element

in some chosen order
– The loop variable is assigned the current element in the data structure
– Clu was the first to introduce

for i in from_to_by(first, last, step) do
…

end

– C copied

Control Statements: iteration cont’d

for (ptr=header; ptr != NULL ; ptr=ptr->next) {
// C for-loop can be used to create user defined iterator

}

18

head

ptr

University of Toronto

• Data structures controlled loops:
– Most new languages include this type of loop
– Enhances readability & writeability

// Perl
@names = (“John”, “Ted”, “Lee”);
foreach $name(@name) {

print $name;
}

Control Statements: iteration cont’d

19

#Python
lst = [10,20,30]
for num in lst:

print num

University of Toronto

• Provides the means of choosing between two or more execution
paths in a program

• Issues:
– What is the form and type of the control expression?
– What is the selectable segment form?
– How should the meaning of nested selectors be specified?

• Types:
– Single way selection
– Two-way selection
– N-way selection

Control Statements: selection

20

University of Toronto

• Single way selectors:
– If the boolean expression is evaluated to true, do something.
– E.g.

IF (x < 10) // Fortran I
print x

– Problem: can select one value only!

Control Statements: selection cont’d

21

University of Toronto

• Two way selectors:
– Pick one out of two execution paths
– <statement> could be single or compound
– E.g.

if(x < 10) then // Pascal
<statement>

else
<statement>

Control Statements: selection cont’d

22

University of Toronto

• N-way selectors:
– Pick one out of n execution paths
– E.g.

Pascal

C/C++/Java

Control Statements: selection cont’d

23

University of Toronto

• What are the selection statements in the language?
– What is the form and type of the expression that controls the selection?
– Can a single statement, a sequence of statements, or a compound

statement be selected?
– How should unrepresented selector expression values be handled, if at

all?
– Is execution flow through the structure restricted to include just a single

selectable segment?

• What are the repetition statements in the language?
– Type and scope of the loop variable?
– Value of the loop variable at loop termination?
– Can the loop variable be modified in the loop body?
– Should the test for loop completion be at the top or bottom of the loop?
– Should the loop parameters be evaluated only once, or once for every

iteration?

Control Statements: issues to consider

24

University of Toronto

• Logic Language
– Prolog

• Functional languages
– Scheme and ML

• Principles of Imperative Programming Languages
– Grammar
– Data Types
– Variables, operators & expressions
– Iteration constructs
– Branching constructs
– Subprogram constructs
– Container constructs

What Did We Cover?

25

University of Toronto

Exam
• 4 Questions (100): Prolog(30), Scheme(20), ML(15), PL Concepts(35)

• 3 Hours. 15 pages (including cover page, empty page and an aid page
at the end!)

• Examination Type D:
Printed lecture slides and textbooks permitted. No other aids are
allowed.

• Sample questions. Office hours before exam. Stay tuned!

• Review the programming language (s) you have learned before……

26

	Slide Number 1
	Components of an Imperative Language
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Components of an Imperative Language
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

