Principles of Programming Languages
Lecture 3

Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT

References: Scheme by Dybvig PL Concepts and Constructs by Sethi
Concepts of PL by Sebesta ML for the Working Prog. By Paulson 1
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

Today

* Logic Programming

* Prolog |

LP: resolution in predicate calculus

We would like to infer new propositions (e.g. facts) from some
existing set of propositions.

An inference rule that can be applied atomically is called a
resolution

- E.g.
Given: PL€P2 ,Q1 € Q2
P1=Q2
Alternatively: T €P2 ,Q1€T
New fact: Ql € P2

New Set of Rules: Pl € P2 ,Ql1€Q2, QL € P2

Resolution gets more complex if variables/values are involved:

— To use resolution with variables, we will need to find values for variables
that allow matching to proceed.

- E.Q.
Given: F(X)Y) € P2(Y,X)
Q1(foo) € F(foo, bar)
New fact: Q1(foo) € P2(bar, foo)
New Set of Rules: F(X)Y) € P2(Y,X), Q1(foo) € F(foo, bar),
Q1(foo) € P2(bar, foo)

LLP: horn clause

Logic programming is heavily based on horn clauses:

c<—hAh,Ah A ... AL,

— Antecedents (h's): conjunction of zero or more conditions which are atomic
constructs in predicate logic.

— Consequent(c): an atomic construct in predicate logic

Meaning of a horn-clause:
— The consequent is true if the antecedents are all true
— cistrueif hy, h,, hs,.... are all true

A horn clause can capture most, but not all, logical
statements/implications, why?

Additional reading: http://en.wikipedia.org/wiki/Horn_clause
4

LP: horn clause made easy!

 Horn clause can include more complex terms:

p(X) < g(X)Y)Ar(X)Y) As(X,Y)
p(X) <« K(M) Ai(T)
qgx\Y) «

* We can assume the following when writing horn-clauses:

p iIs the program name

q,r,s are the subprogram names
X is a parameter of the program
Y is a local variable

LLP: horn clause

c<—hAh,Ah A ... AL,

— Antecedents (h's): conjunction of zero or more conditions which are atomic
constructs in predicate logic.

— Consequent(c): an atomic construct in predicate logic

« Examples of horn clauses:
— Father (X, Y) € Child (Y, X) A Male (X).
— Student(X) <€ Undergraduate(X).

» Example of Non-horn clauses:
— Student(X) € Undergraduate(X) V Graduate(X)
— = (Student(X)) € Deregistered(X).

LP: specifying non-horn rules

* Many non-horn rules can be transformed to horn form using
one of two methods:

— logical equivalence
— Skolemization

» Logical equivalence:

— Uses the following logical laws:
* Negation -—A= A

De Morgan’s Law -(AVB) =-A A-B
-(AAB) =-A V-B

Distributive Property AVBAC=AVB)AAVO
AABVC)=(AAB)V(AACQC)

Absorption Law AV (AAB)=A
AAAVB)=A

Implication Laws A B =(A=> B)A(B=> A)
A €B =AYV -B

LP: specifying non-horn rules

» Logical equivalence rules:

* Negation
 De Morgan’s Law

 Distributive Property

o Absorption Law

* Implication Laws

» Examples:
e -A € -B=-AV - (-B)
=-AVB
= B V-A
= B €A

—A= A

-(AVB) =-A A-B

-(AAB) =-AV-B
AV(BAC=AVB)AAVO
AABVC)=(AAB)V(AACQC)
AV (AAB)=A

AAAVB)=A

Ao B =(A=> B)A(B=> A)
A€B =AV-B

(horn-clause)

- A€(BVC=AV - (B VC)

= AV

(=B A -C)

= (A V-B)A(AV -C)

= (A€ B) AA € C)

(horn-clauses)

LP: specifying non-horn rules — cont’d

Logical equivalence rules:
* Negation
 De Morgan’s Law

 Distributive Property

o Absorption Law

* Implication Laws

Examples:

—-A= A
-(AV B) =-A A-B
-(A A B) =-A V -B

AV (BAC)=(AVB)A(AVC)
AABVC)=(AAB)V (AAC)
AV (AAB)=A
AA(AVB)=A

AoB =(A B)ABD A
A€B =AV-B

- A€CB€C)=AV -(B€O
=A V-(B V -C)
=A V (-BA--C)
=AYV (-BACQC)
=(AV -B)A(AVC)

—(A€B) AAVC)

(non-horn)

LP: specifying non-horn rules — cont’d

 Skolemization:

— Non horn formulas like (3X) A(X) can be converted to horn-clause by
introducing a skolem constant and/or skolem function. The resulting
clause is almost the same thing.

* Why does skolemization works?

— We only need 3X because we don’t have have a name for X. By creating
artificial names (skolem names), we can eliminate many 3°s and convert
many formulas to horn clause.

10

LP: specifying non-horn rules — cont’d

« Horn clause c<hAh,Ah; ... Ah
— What are we going to do about quantifiers? (3X) and (VX)

n

« Skolemization:
— Variables bound by existential (3X) quantifiers which are not inside the scope
of universal quantifiers can simply be replaced by constants:
» (3X) mother(john,X) becomes mother(john,m)

— When the existential quantifier (3Y) is inside a universal quantifier (v X) , the
bound variable must be replaced by a function of the variables bound by
universal quantifier (VX) .

o (VX) [person(X) =>» (3Y) mother(X,Y)]
becomes
(VX) [person(X) =» mother(X, m(X))]

11

Prolog |

12

Prolog:- Programmation en logique

The first and most popular logic programming language

— Invented by Alain Colmerauer and Phillipe Roussel at the University of
Aix-Marseille in 1971 (France)

Characteristics: %
— Is very weakly typed Answer:

— Has no data abstraction e
— Has no functional abstraction!

— Has no mutab|e state Programming Environment
_ 1CI snowledge Base:
Has no explicit control flow i e B
So, how do you program? Proof Procedure

— Load facts/rules into interpreter
— Make queries to see if a fact is:
* in the knowledge-base or
 can be implied from existing facts
or rules

13
Prolog is really an engine to prove theorems

Prolog: data types — quick intro

Simple
— Constants :

» Numbers: integer, floating point,...
« Atoms: alphabetic sequence starting with a lower case letter (e.g. apple)

— Variables:
» Variables start with capital letters or underscore

Complex
— Lists
— Structures

14

Prolog: horn clauses

 Recall
c<—hAh,Ah;A... Ah,

e Syntax: <head> :- <body>.
— You can conclude that <head> is true, if you can prove that <body> is true
— The symbol :- is read as if

o 3 types of clauses:
— Facts
— Rules
— Queries

15

Prolog: facts

A fact is a horn clause with an empty body (nothing to prove).

Syntax
<head>.

What makes a fact a fact?

Examples

— Exams exams.

— Assignments assignments.

— Taxes taxes.

— The earth is round. round(earth).

— The sky is blue. blue(sky).

— The sun is hot. hot(sun).

— Mary is a female. female(mary).

— Beethoven lived between 1770 & 1827. person(beethoven,1770,1827).
16

Prolog: facts — cont’d

« Facts about facts:
— Full stop “.” at the end of every fact.
— The number of arguments in a fact is called arity.
» E.g. female(mary). is an instance of female/1 (functor female, arity 1)
— Facts with different number of arguments are distinct

» E.g. female(mary,may). is different from female(mary).

17

Prolog: rules

 AvruleinProlog is a full horn clause:

¢c<—hAh,AhyA... AL

e Syntax:

n

rel, :- rel,, rel;, ... rel
I L
head body

— If I know that all those RHS relations (those in the body) hold, then | also
know that this LHS relation (in the head) holds.

 Examples:
— If there is smoke there is fire
fire :- smoke.

— If the course is boring, | leave
leave(i) :- boring(course).

— Joe is going to kill the teacher if he fails CSC324.
Kills(joe, X) :- fails(joe,csc324), teaches(X,csc324). 18

Prolog: rules — cont’d

 Examples:
— X s female if X is the mother of anyone.
female(X) :- mother(X,).

— X s the sister of Y, if X is female and X's parents are M and F, and Y's
parents are M and F

sister_of(X,Y):- female(X),parents(X,M,F),parents(Y,M,F).

 When to use rules?
— Use rules to say that a particular fact depends on a group of facts.
— Use rules to deduce new facts from existing ones.

* Rules of rules:
— The head of the rule consist of at most one predicate

— The body of the rule is a finite sequence of literals separated by , or
conjunction (and)

— Rules always end with a period “.
19

Prolog: queries

 Aquery is a clause with an empty head.
< hAh,Ah,A ... Ah
e Syntax
|? <body>.
— Try to prove that <body> is true
— The goal is represented to the interpreter as a question.

 Examples
|?-round(earth). - IS It true that the earth is round?
(or simpler than that: is the earth round?)
|?-round(X). - IS It true that there are entities which are round?

(or simpler than that: what entities are round?)

20

Prolog: queries — cont’d

 Examples
|?-composer(beethoven,1770,1827). - IS It true that beethoven was a
composer who lived between 1770
and 1827
|?-owns(john,book). - IS It true that john owns a book?
(simpler: does john own a book?)
|?-owns(john, X). - IS it true that john owns something?
(simpler: does john own something?
or

what does John own?)

21

Prolog: simple types - constants

There are two types of constants: atoms and numbers.

Atoms:

— Alphanumeric atoms: alphabetic sequence starting with a lower case letter
o E.g.:apple al apple_cart

— Special atoms
« Eg!; [1{},

— Symbolic atoms
e Eg.& <> * - + >>

— Quoted atoms: sequence of characters surrounded by single quotes

» Can make anything an atom by enclosing it in single quotes.
« E.g ‘Apple’ ‘hello world’

Numbers:

— Integers and Floating Point numbers
« £Eg.0 1 9821 -10 1.3 -1.3E102

22

Prolog: simple types - variables

Variables start with capital letters or underscore

There are no global variables (assert and retract, will see them later...)

Instantiated vs. un-instantiated:
— if the object a variable stands for is already determined, var is instantiated
— if the object a variable stands for is not yet determined, var is un-instantiated

An instantiated variable in Prolog cannot change its value

Variables are limited in scope to the clause they appear in (local vars)
- E.g.
grandParent(X,Z2) :- parent(X,Y), parent(Y,Z). % The Xs here are the same var
sister_of(X,Y):- female(X),parents(X,M,F),parents(Y,M,F). % But not the same
% as those here

There is a special anonymous variable “ ” which is used to denote
“don’t care”

— Eg
Parent(X) :- mother(X,).
married(X) :- husband(X,). 23

— Note that every use of is considered a separate variable

Prolog: example 1

Facts

likes(eve, pie).
likes(al, eve).
likes(eve, tom).

likes(eve, eve).

food(pie).
food (apple).

person(tom).

\-'ay'a ble

query

?-likes(al, pie).

N0 ¥~ answer
?-likes(al,eve).

yes

?-likes(eve,al).

no

?-likes (person, food).
no

?-likes(al,Who).
Who=eve
?-likes (eve,W).
W=pie ;
W=tom
W=eve (D‘\
no
force search for
more answers

answer with
variable binding

24

	Slide Number 1
	Today
	LP: resolution in predicate calculus
	LP: horn clause
	LP: horn clause made easy!
	LP: horn clause
	LP: specifying non-horn rules
	LP: specifying non-horn rules
	LP: specifying non-horn rules – cont’d
	LP: specifying non-horn rules – cont’d
	LP: specifying non-horn rules – cont’d
	Slide Number 12
	Prolog:- Programmation en logique
	Prolog: data types – quick intro
	Prolog: horn clauses
	Prolog: facts
	Prolog: facts – cont’d
	Prolog: rules
	Prolog: rules – cont’d
	Prolog: queries
	Prolog: queries – cont’d
	Prolog: simple types - constants
	Prolog: simple types - variables
	Prolog: example 1

