
Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 3

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

Today
• Logic Programming

• Prolog I

2

LP: resolution in predicate calculus
• We would like to infer new propositions (e.g. facts) from some

existing set of propositions.

• An inference rule that can be applied atomically is called a
resolution
– E.g.

Given: P1  P2 , Q1  Q2
P1 ≡ Q2

Alternatively: T  P2 , Q1  T
New fact: Q1  P2
New Set of Rules: P1  P2 , Q1  Q2 , Q1  P2

• Resolution gets more complex if variables/values are involved:
– To use resolution with variables, we will need to find values for variables

that allow matching to proceed.
– E.g.

Given: F(X,Y)  P2(Y,X)
Q1(foo)  F(foo, bar)

New fact: Q1(foo)  P2(bar, foo)
New Set of Rules: F(X,Y)  P2(Y,X) , Q1(foo)  F(foo, bar) ,

Q1(foo)  P2(bar, foo) 3

LP: horn clause
• Logic programming is heavily based on horn clauses:

– Antecedents (h's): conjunction of zero or more conditions which are atomic
constructs in predicate logic.

– Consequent(c): an atomic construct in predicate logic

• Meaning of a horn-clause:
– The consequent is true if the antecedents are all true
– c is true if h1, h2, h3,.... are all true

• A horn clause can capture most, but not all, logical
statements/implications, why?

• Additional reading: http://en.wikipedia.org/wiki/Horn_clause
4

LP: horn clause made easy!
• Horn clause can include more complex terms:

p(X)  q(X,Y) Λ r(X,Y) Λ s(X,Y)
p(X)  K(M) Λ i(T)
q(X,Y) ……
r(X,Y) ……
s(X,Y) ……
k(M) ……
i(T) ……
…..

• We can assume the following when writing horn-clauses:
– p is the program name
– q,r,s are the subprogram names
– X is a parameter of the program
– Y is a local variable

5

LP: horn clause

– Antecedents (h's): conjunction of zero or more conditions which are atomic
constructs in predicate logic.

– Consequent(c): an atomic construct in predicate logic

• Examples of horn clauses:
– Father (X, Y)  Child (Y, X) Λ Male (X).
– Student(X)  Undergraduate(X).

• Example of Non-horn clauses:
– Student(X)  Undergraduate(X) V Graduate(X)
– ¬ (Student(X))  Deregistered(X).

6

LP: specifying non-horn rules
• Many non-horn rules can be transformed to horn form using

one of two methods:
– logical equivalence
– Skolemization

• Logical equivalence:
– Uses the following logical laws:

• Negation ¬¬A ≡ A

• De Morgan’s Law ¬(A V B) ≡ ¬A Λ ¬B
¬(A Λ B) ≡ ¬A V ¬B

• Distributive Property A V (B Λ C) ≡ (A V B) Λ (A V C)
A Λ (B V C) ≡ (A Λ B) V (A Λ C)

• Absorption Law A V (A Λ B) ≡ A
A Λ (A V B) ≡ A

• Implication Laws A ↔ B ≡ (A  B) Λ (B  A)
A  B ≡ A V ¬B

7

LP: specifying non-horn rules
• Logical equivalence rules:

• Negation ¬¬A ≡ A
• De Morgan’s Law ¬(A V B) ≡ ¬A Λ ¬B

¬(A Λ B) ≡ ¬A V ¬B
• Distributive Property A V (B Λ C) ≡ (A V B) Λ (A V C)

A Λ (B V C) ≡ (A Λ B) V (A Λ C)
• Absorption Law A V (A Λ B) ≡ A

A Λ (A V B) ≡ A
• Implication Laws A ↔ B ≡ (A  B) Λ (B  A)

A  B ≡ A V ¬B

• Examples:
• ¬A  ¬B≡ ¬A V ¬ (¬B)

≡ ¬A V B
≡ B V ¬A
≡ B  A (horn-clause)

• A  (B V C)≡ A V ¬ (B V C)
≡ A V (¬B Λ ¬C)
≡ (A V ¬B) Λ (A V ¬C)
≡ (A  B) Λ (A  C) (horn-clauses)

8

LP: specifying non-horn rules – cont’d
• Logical equivalence rules:

• Negation ¬¬A ≡ A
• De Morgan’s Law ¬(A V B) ≡ ¬A Λ ¬B

¬(A Λ B) ≡ ¬A V ¬B
• Distributive Property A V (B Λ C) ≡ (A V B) Λ (A V C)

A Λ (B V C) ≡ (A Λ B) V (A Λ C)
• Absorption Law A V (A Λ B) ≡ A

A Λ (A V B) ≡ A
• Implication Laws A ↔ B ≡ (A  B) Λ (B  A)

A  B ≡ A V ¬B
• Examples:

• A  (B  C) ≡ A V ¬(B  C)
≡ A V ¬(B V ¬C)
≡ A V (¬B Λ ¬ ¬C)
≡ A V (¬B Λ C)
≡ (A V ¬B) Λ (A V C)
≡ (A  B) Λ (A V C) (non-horn)

9

LP: specifying non-horn rules – cont’d
• Skolemization:

– Non horn formulas like (∃X) A(X) can be converted to horn-clause by
introducing a skolem constant and/or skolem function. The resulting
clause is almost the same thing.

• Why does skolemization works?
– We only need ∃X because we don’t have have a name for X. By creating

artificial names (skolem names), we can eliminate many ∃’s and convert
many formulas to horn clause.

10

LP: specifying non-horn rules – cont’d
• Horn clause

– What are we going to do about quantifiers? (∃X) and (∀X)

• Skolemization:
– Variables bound by existential (∃X) quantifiers which are not inside the scope

of universal quantifiers can simply be replaced by constants:
• (∃X) mother(john,X) becomes mother(john,m)

– When the existential quantifier (∃Y) is inside a universal quantifier (∀X) , the
bound variable must be replaced by a function of the variables bound by
universal quantifier (∀X) .

• (∀X) [person(X)  (∃Y) mother(X,Y)]
becomes
(∀X) [person(X)  mother(X, m(X))]

11

Prolog I

12

Prolog:- Programmation en logique
• The first and most popular logic programming language

– Invented by Alain Colmerauer and Phillipe Roussel at the University of
Aix-Marseille in 1971 (France)

• Characteristics:
– Is very weakly typed
– Has no data abstraction
– Has no functional abstraction!
– Has no mutable state
– Has no explicit control flow

• So, how do you program?
– Load facts/rules into interpreter
– Make queries to see if a fact is:

• in the knowledge-base or
• can be implied from existing facts

or rules

• Prolog is really an engine to prove theorems
13

Prolog: data types – quick intro
• Simple

– Constants :
• Numbers: integer, floating point,…
• Atoms: alphabetic sequence starting with a lower case letter (e.g. apple)

– Variables:
• Variables start with capital letters or underscore

• Complex
– Lists
– Structures

14

Prolog: horn clauses
• Recall

• Syntax: <head> :- <body>.
– You can conclude that <head> is true, if you can prove that <body> is true
– The symbol :- is read as if

• 3 types of clauses:
– Facts
– Rules
– Queries

15

Prolog: facts
• A fact is a horn clause with an empty body (nothing to prove).

• Syntax
<head>.

• What makes a fact a fact?

• Examples
– Exams exams.
– Assignments assignments.
– Taxes taxes.
– The earth is round. round(earth).
– The sky is blue. blue(sky).
– The sun is hot. hot(sun).
– Mary is a female. female(mary).
– Beethoven lived between 1770 & 1827. person(beethoven,1770,1827).

16

Prolog: facts – cont’d
• Facts about facts:

– Full stop “.” at the end of every fact.
– The number of arguments in a fact is called arity.

• E.g. female(mary). is an instance of female/1 (functor female, arity 1)
– Facts with different number of arguments are distinct

• E.g. female(mary,may). is different from female(mary).

17

Prolog: rules
• A rule in Prolog is a full horn clause:

• Syntax:

– If I know that all those RHS relations (those in the body) hold, then I also
know that this LHS relation (in the head) holds.

• Examples:
– If there is smoke there is fire

fire :- smoke.

– If the course is boring, I leave
leave(i) :- boring(course).

– Joe is going to kill the teacher if he fails CSC324.
kills(joe, X) :- fails(joe,csc324), teaches(X,csc324).

head body

18

Prolog: rules – cont’d
• Examples:

– X is female if X is the mother of anyone.
female(X) :- mother(X,_).

– X is the sister of Y, if X is female and X's parents are M and F, and Y's
parents are M and F

sister_of(X,Y):- female(X),parents(X,M,F),parents(Y,M,F).

• When to use rules?
– Use rules to say that a particular fact depends on a group of facts.
– Use rules to deduce new facts from existing ones.

• Rules of rules:
– The head of the rule consist of at most one predicate
– The body of the rule is a finite sequence of literals separated by , or

conjunction (and)
– Rules always end with a period “.”

19

Prolog: queries
• A query is a clause with an empty head.

• Syntax
|? <body>.

– Try to prove that <body> is true
– The goal is represented to the interpreter as a question.

• Examples

|?-round(earth). - is it true that the earth is round?
(or simpler than that: is the earth round?)

|?-round(X). - is it true that there are entities which are round?
(or simpler than that: what entities are round?)

20

Prolog: queries – cont’d
• Examples

|?-composer(beethoven,1770,1827). - is it true that beethoven was a
composer who lived between 1770
and 1827

|?-owns(john,book). - is it true that john owns a book?
(simpler: does john own a book?)

|?-owns(john,X). - is it true that john owns something?
(simpler: does john own something?

or
what does John own?)

21

Prolog: simple types - constants
• There are two types of constants: atoms and numbers.

• Atoms:
– Alphanumeric atoms: alphabetic sequence starting with a lower case letter

• E.g.: apple a1 apple_cart
– Special atoms

• E.g ! ; [] {} ,
– Symbolic atoms

• E.g. & < > * - + >>
– Quoted atoms: sequence of characters surrounded by single quotes

• Can make anything an atom by enclosing it in single quotes.
• E.g ‘Apple’ ‘hello world’

• Numbers:
– Integers and Floating Point numbers

• E.g. 0 1 9821 -10 1.3 -1.3E102

22

Prolog: simple types - variables
• Variables start with capital letters or underscore

• There are no global variables (assert and retract, will see them later…)

• Instantiated vs. un-instantiated:
– if the object a variable stands for is already determined, var is instantiated
– if the object a variable stands for is not yet determined, var is un-instantiated

• An instantiated variable in Prolog cannot change its value

• Variables are limited in scope to the clause they appear in (local vars)
– E.g.

grandParent(X,Z) :- parent(X,Y), parent(Y,Z). % The Xs here are the same var
sister_of(X,Y):- female(X),parents(X,M,F),parents(Y,M,F). % But not the same

% as those here
• There is a special anonymous variable “_” which is used to denote

“don’t care”
– E.g

Parent(X) :- mother(X,_).
married(X) :- husband(X,_).

– Note that every use of _ is considered a separate variable
23

Prolog: example 1
Facts

24

	Slide Number 1
	Today
	LP: resolution in predicate calculus
	LP: horn clause
	LP: horn clause made easy!
	LP: horn clause
	LP: specifying non-horn rules
	LP: specifying non-horn rules
	LP: specifying non-horn rules – cont’d
	LP: specifying non-horn rules – cont’d
	LP: specifying non-horn rules – cont’d
	Slide Number 12
	Prolog:- Programmation en logique
	Prolog: data types – quick intro
	Prolog: horn clauses
	Prolog: facts
	Prolog: facts – cont’d
	Prolog: rules
	Prolog: rules – cont’d
	Prolog: queries
	Prolog: queries – cont’d
	Prolog: simple types - constants
	Prolog: simple types - variables
	Prolog: example 1

