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Today
• Logic Programming

• Prolog I
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LP: resolution in predicate calculus
• We would like to infer new propositions (e.g. facts) from some 

existing set of propositions. 

• An inference rule that can be applied atomically is called a 
resolution
– E.g.

Given: P1  P2   , Q1  Q2  
P1 ≡ Q2

Alternatively: T    P2   , Q1  T
New fact: Q1  P2
New Set of Rules: P1  P2   , Q1  Q2 ,  Q1  P2

• Resolution gets more complex if variables/values are involved:
– To use resolution with variables, we will need to find values for variables 

that allow matching to proceed.
– E.g.

Given: F(X,Y)    P2(Y,X)
Q1(foo)   F(foo, bar)

New fact: Q1(foo)   P2(bar, foo)
New Set of Rules: F(X,Y)    P2(Y,X) , Q1(foo)  F(foo, bar) , 

Q1(foo)   P2(bar, foo) 3



LP: horn clause
• Logic programming is heavily based on horn clauses:

– Antecedents (h's): conjunction of zero or more conditions which are atomic 
constructs in predicate logic.

– Consequent(c): an atomic construct in predicate logic

• Meaning of a horn-clause:
– The consequent is true if the antecedents are all true
– c is true if h1, h2, h3,.... are all true

• A horn clause can capture most, but not all, logical 
statements/implications, why?

• Additional reading: http://en.wikipedia.org/wiki/Horn_clause
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LP: horn clause made easy!
• Horn clause can include more complex terms: 

p(X)      q(X,Y) Λ r(X,Y) Λ s(X,Y)
p(X)      K(M)   Λ i(T)
q(X,Y) ……
r(X,Y)  ……
s(X,Y)  ……
k(M)    ……
i(T)      ……
…..

• We can assume the following when writing horn-clauses:
– p is the program name
– q,r,s are the subprogram names
– X is a parameter of the program
– Y is a local variable
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LP: horn clause

– Antecedents (h's): conjunction of zero or more conditions which are atomic 
constructs in predicate logic.

– Consequent(c): an atomic construct in predicate logic

• Examples of horn clauses:
– Father (X, Y)  Child (Y, X) Λ Male (X).
– Student(X)     Undergraduate(X).

• Example of Non-horn clauses:
– Student(X)  Undergraduate(X) V Graduate(X)  
– ¬ (Student(X) )  Deregistered(X).
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LP: specifying non-horn rules
• Many non-horn rules can be transformed to horn form using 

one of two methods:
– logical equivalence
– Skolemization

• Logical equivalence:
– Uses the following logical laws:

• Negation ¬¬A ≡ A

• De Morgan’s Law ¬(A V B)      ≡ ¬A  Λ ¬B
¬(A Λ B)      ≡ ¬A  V ¬B

• Distributive Property A V (B Λ C) ≡ (A V B) Λ (A V C)
A Λ (B V C) ≡ (A Λ B) V (A Λ C)

• Absorption Law A V (A Λ B) ≡ A                         
A Λ (A V B) ≡ A                         

• Implication Laws A ↔ B ≡ (A  B) Λ (B  A) 
A  B         ≡ A V ¬B
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LP: specifying non-horn rules
• Logical equivalence rules:

• Negation ¬¬A ≡ A
• De Morgan’s Law ¬(A V B)      ≡ ¬A  Λ ¬B

¬(A Λ B)      ≡ ¬A  V ¬B
• Distributive Property A V (B Λ C) ≡ (A V B) Λ (A V C)

A Λ (B V C) ≡ (A Λ B) V (A Λ C)
• Absorption Law A V (A Λ B) ≡ A                         

A Λ (A V B) ≡ A                         
• Implication Laws A ↔ B ≡ (A  B) Λ (B  A) 

A  B         ≡ A V ¬B

• Examples:
• ¬A  ¬B≡ ¬A V ¬ (¬B)

≡ ¬A V B
≡ B  V ¬A
≡ B    A (horn-clause)

• A  (B V C)≡ A  V ¬ (B   V C)
≡ A V (¬B Λ ¬C)
≡ (A  V ¬B) Λ (A V ¬C)
≡ (A  B)   Λ (A  C) (horn-clauses)
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LP: specifying non-horn rules – cont’d
• Logical equivalence rules:

• Negation ¬¬A ≡ A
• De Morgan’s Law ¬(A V B)      ≡ ¬A  Λ ¬B

¬(A Λ B)      ≡ ¬A  V ¬B
• Distributive Property A V (B Λ C) ≡ (A V B) Λ (A V C)

A Λ (B V C) ≡ (A Λ B) V (A Λ C)
• Absorption Law A V (A Λ B) ≡ A                         

A Λ (A V B) ≡ A                         
• Implication Laws A ↔ B ≡ (A  B) Λ (B  A) 

A  B         ≡ A V ¬B
• Examples:

• A  (B  C) ≡ A V ¬(B  C)
≡ A  V ¬(B  V  ¬C)
≡ A  V   (¬B Λ ¬ ¬C)
≡ A  V   (¬B Λ C)
≡ (A V  ¬B) Λ (A V C)
≡ (A  B)   Λ (A V C) (non-horn)
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LP: specifying non-horn rules – cont’d
• Skolemization:

– Non horn formulas like (∃X) A(X) can be converted to horn-clause by 
introducing a skolem constant and/or skolem function. The resulting 
clause is almost the same thing.

• Why does skolemization works? 
– We only need ∃X because we don’t have have a name for X. By creating 

artificial names (skolem names), we can eliminate many ∃’s and convert 
many formulas to horn clause.
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LP: specifying non-horn rules – cont’d
• Horn clause

– What are we going to do about quantifiers? (∃X) and (∀X) 

• Skolemization:
– Variables bound by existential (∃X) quantifiers which are not inside the scope 

of universal quantifiers can simply be replaced by constants:   
• (∃X) mother(john,X) becomes           mother(john,m) 

– When the existential quantifier (∃Y) is inside a universal quantifier (∀X) , the 
bound variable must be replaced by a function of the variables bound by 
universal quantifier (∀X) .

• (∀X)  [person(X)  (∃Y) mother(X,Y)]  
becomes 
(∀X) [person(X)  mother(X, m(X))]
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Prolog I
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Prolog:- Programmation en logique
• The first and most popular logic programming language

– Invented by Alain Colmerauer and Phillipe Roussel at the University of 
Aix-Marseille in 1971 (France)

• Characteristics:
– Is very weakly typed
– Has no data abstraction
– Has no functional abstraction!
– Has no mutable state
– Has no explicit control flow

• So, how do you program?
– Load facts/rules into interpreter
– Make queries to see if a fact is:

• in the knowledge-base or
• can be implied from existing facts

or rules

• Prolog is really an engine to prove theorems
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Prolog: data types – quick intro
• Simple

– Constants : 
• Numbers: integer, floating point,…
• Atoms:     alphabetic sequence starting with a lower case letter (e.g. apple)

– Variables:
• Variables start with capital letters or underscore

• Complex
– Lists
– Structures
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Prolog: horn clauses
• Recall

• Syntax: <head> :- <body>.
– You can conclude that <head> is true, if you can prove that <body> is true
– The symbol :- is read as if

• 3 types of clauses:
– Facts
– Rules
– Queries
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Prolog: facts
• A fact is a horn clause with an empty body (nothing to prove).

• Syntax
<head>.

• What makes a fact a fact?

• Examples
– Exams exams. 
– Assignments assignments. 
– Taxes taxes.
– The earth is round. round(earth).
– The sky is blue. blue(sky).
– The sun is hot. hot(sun).
– Mary is a female. female(mary).
– Beethoven lived between 1770 & 1827.   person(beethoven,1770,1827).
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Prolog: facts – cont’d
• Facts about facts:

– Full stop “.” at the end of every fact.
– The number of arguments in a fact is called arity.

• E.g. female(mary). is an instance of female/1 (functor female, arity 1)
– Facts with different number of arguments are distinct

• E.g. female(mary,may). is different from female(mary).
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Prolog: rules
• A rule in Prolog is a full horn clause:

• Syntax:

– If I know that all those RHS relations (those in the body) hold, then I also 
know that this LHS relation (in the head) holds.

• Examples:
– If there is smoke there is fire

fire :- smoke.

– If the course is boring, I leave
leave(i) :- boring(course).

– Joe is going to kill the teacher if he fails CSC324.        
kills(joe, X) :- fails(joe,csc324), teaches(X,csc324).

head body

18



Prolog: rules – cont’d
• Examples:

– X is female if X is the mother of anyone.
female(X) :- mother(X,_).  

– X is the sister of Y, if X is female and X's parents are M and F, and Y's 
parents are M and F

sister_of(X,Y):- female(X),parents(X,M,F),parents(Y,M,F).

• When to use rules?
– Use rules to say that a particular fact depends on a group of facts.
– Use rules to deduce new facts from existing ones.

• Rules of rules:
– The head of the rule consist of at most one predicate
– The body of the rule is a finite sequence of literals separated by , or 

conjunction (and)
– Rules always end with a period “.”

19



Prolog: queries
• A query is a clause with an empty head.

• Syntax
|? <body>.

– Try to prove that <body> is true
– The goal is represented to the interpreter as a question.

• Examples

|?-round(earth). - is it true that the earth is round?
(or simpler than that:  is the earth round?)

|?-round(X). - is it true that there are entities which are round? 
(or simpler than that:  what entities are round?)
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Prolog: queries – cont’d
• Examples

|?-composer(beethoven,1770,1827). - is it true that beethoven was a 
composer who lived between 1770 
and 1827

|?-owns(john,book). - is it true that john owns a book?
(simpler: does john own a book?)

|?-owns(john,X). - is it true that john owns something?
(simpler: does john own something?

or
what does John own?)
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Prolog: simple types - constants
• There are two types of constants: atoms and numbers.

• Atoms:
– Alphanumeric atoms: alphabetic sequence starting with a lower case letter

• E.g.: apple a1  apple_cart
– Special atoms

• E.g !  ;  [ ] {} ,
– Symbolic atoms

• E.g. &  <  >  *  - +  >>
– Quoted atoms: sequence of characters surrounded by single quotes

• Can make anything an atom by enclosing it in single quotes.
• E.g ‘Apple’  ‘hello world’

• Numbers:
– Integers and Floating Point numbers

• E.g. 0  1  9821  -10  1.3   -1.3E102
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Prolog: simple types - variables
• Variables start with capital letters or underscore

• There are no global variables (assert and retract, will see them later…)

• Instantiated vs. un-instantiated:
– if the object a variable stands for is already determined, var is instantiated
– if the object a variable stands for is not yet determined, var is un-instantiated

• An instantiated variable in Prolog cannot change its value

• Variables are limited in scope to the clause they appear in (local vars) 
– E.g.

grandParent(X,Z) :- parent(X,Y), parent(Y,Z). % The Xs here are the same var
sister_of(X,Y):- female(X),parents(X,M,F),parents(Y,M,F).  % But not the same 

% as those here
• There is a special anonymous variable “_” which is used to denote 

“don’t care”
– E.g

Parent(X)   :- mother(X,_).
married(X) :- husband(X,_).

– Note that every use of _ is considered  a separate variable
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Prolog: example 1
Facts
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