Principles of Programming Languages Lecture 4

Wael Aboulsaadat

wael@cs.toronto.edu

http://portal.utoronto.ca/

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoTReferences: Scheme by DybvigPL Concepts and Constructs by SethiConcepts of PL by SebestaML for the Working Prog. By Paulson1Prog. in Prolog by Clocksin and MellishPL Pragmatics by Scott

Prolog: example 1 – cont'd

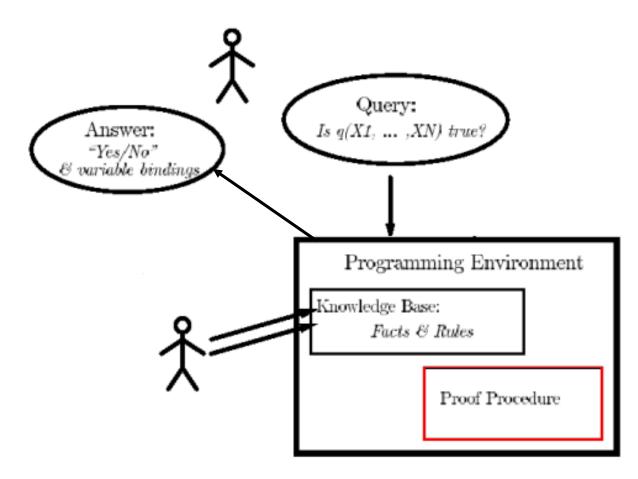
Facts

```
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).
```

```
?-likes(A,B).
A=eve,B=pie ; A=al,B=eve ; ...
?-likes(D,D).
D=eve ; no
?-likes(eve,W), person(W).
W=tom
?-likes(al,V), likes(eve,V).
V=eve ; no
```

Prolog: proof procedure

- Two main processes:
 - Unification
 - Top-down reasoning



Prolog: unification

- First step in proof procedure
- Prolog tries to satisfy a query by *unifying* it with some conclusion and see if it is true!
- Process of finding these suitable "assignments" of values to variables is called *unification*
 - It is really a process of pattern matching to make statements identical
 - How does it compare to variable bindings in imperative world (C/C++/Java/python) ?

• Rules of unification:

Object 1	Object 2	example		result	
constant	free var.	4	Х	X=4	
bound variable	free variable	X	Y	Y gets the value of X	
free variable	bound variable	X	Y	X gets the value of Y	
bound variable	constant	X	b	fails if X has a value different then "b"	
compound object with Variables	compound object with constants	f(X,Y)	f(2,3)	X=2, Y=3	
compound object with nested compound object	compound object	f(q(2,X),3)	f(P,3)	succeds if P is free, and P=q(2,X) . (more posibilities)	
compund object	compound object	f(3,X)	q(3,X)	fails, due to different functors (p is not q)	

- Rules of unification:
 - A constant unifies only with itself, it cannot unify with any other constant.
 - Two structures unify iff they have <u>the same name</u>, <u>number of</u> <u>arguments</u> and <u>all the arguments unify</u>.
 - Unification requires all instances of the <u>same variable</u> in a rule to get the same value

• Examples:

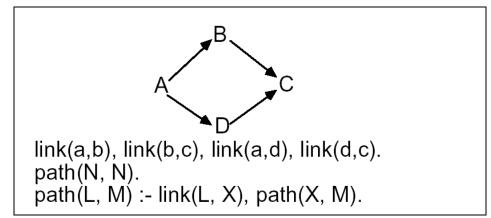
```
a(b,C,d,E)
with x(\ldots) doesn't unify: a and x differ
a(b,C,d,E)
                     no: different # of args
a(_,_,_)
a(b,C,d,E)
a(j, f, G, H)
                     no: b ≠ j
a(b,C,d,E)
                     yes: by either \{C \mapsto f, G \mapsto d, H \mapsto E\}
a(b, f, G, H)
                     or \{C \mapsto f, G \mapsto d, E \mapsto H\}
a(pred(X,j))
a(pred(k,j)) yes: {X \mapsto k}
a(pred(X,j))
                     yes: {B \mapsto pred(X, j) }
a (B)
```

• Examples:

- Does p(X,X) unify with p(b,b)?
- Does p(X,X) unify with p(b,c)?
- Does p(X,b) unify with p(Y,Y)?
- Does p(X,Z,Z) unify with p(Y,Y,b)?
- Does p(X,b,X) unify with p(Y,Y,c)?
 - To make the third arguments equal, we must unify X with c
 - To make the second argument equal, we must unify Y with b.
 - So, p(X,b,X) becomes p(c,b,c), and p(Y,Y,c) becomes p(b,b,c).
 - However, p(c,b,c) and p(b,b,c) are not identical → different atoms → different semantics

Prolog: example 2

• Facts & rules:



• Posing queries:

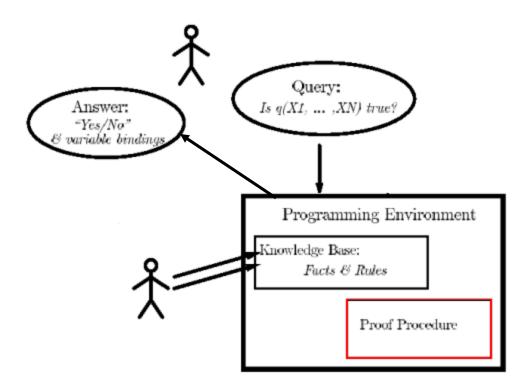
Based on our logical encoding of the graph, we can then write queries:

```
?- path(a,c)
yes
?- path(c,a)
no
?- path(a,X), path(X,c)
X = a
X = b
X = c
X = d
```

Notice that we didn't write a graph traversal algorithm, and we didn't hard 9 code the set of questions we can ask in advance. We just define what a graph is...

Prolog: proof procedure - revisited

- Two main processes:
 - \checkmark Unification
 - Top-down reasoning



Prolog: reasoning

• Given a set of facts and rules, we need a mechanism to deduce new facts and/or prove that a given rule is true or false or has no answer

• There are two techniques to do this:

- Bottom-up reasoning
- Top-down reasoning

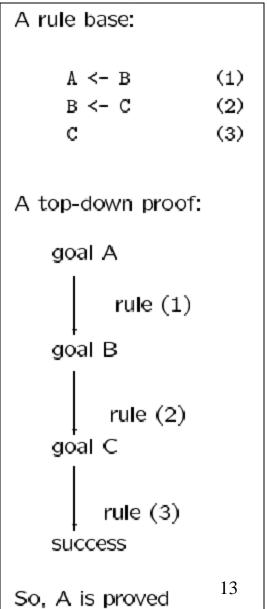
Prolog: bottom-up reasoning

 <u>Bottom-up</u> (or forward) reasoning: start- 	A rule base:		
ing from the given facts, apply rules to	A <-	- В	(1)
infer everything that is true.	B <-	- C	(2)
<i>e.g.</i> , Suppose the fact <i>B</i> and the rule $A \leftarrow B$	С		(3)
are given. Then infer that A is true.	A bottom-up proof:		
Example	infer A ↑		
Rule base:		rule (1)	
p(X,Y,Z) <- q(X),q(Y),q(Z). q(a1). q(a2).	infer	в	
····		rule (2)	
q(an).	infer C		
Bottom-up inference derives n^3 facts of the form $p(a_i, a_j, a_k)$:	Ť	rule (3)	
p(a1, a1, a1)	start	• •	
p(a1, a1, a2) p(a1, a2, a3) 	So, A is	proved	12

Prolog: top-down reasoning

• <u>Top-down</u> (or backward) reasoning: starting from the query, apply the rules in reverse, attempting only those lines of inference that are relevant to the query.

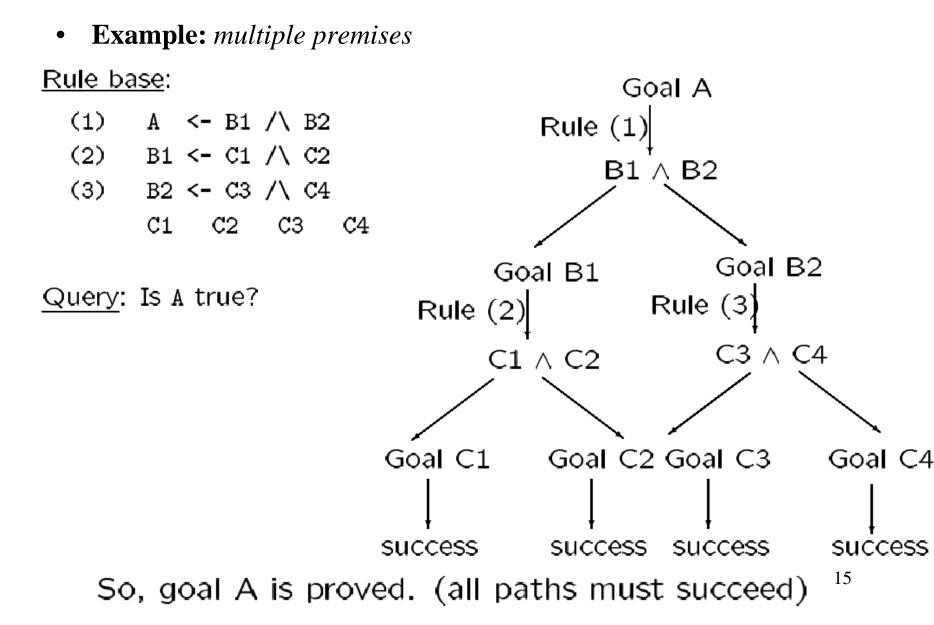
e.g., Suppose the query is A, and the rule $A \leftarrow B$ is given. Then to prove A, try to prove B.



Prolog: top-down reasoning – cont'd

- Multiple rules and multiple premises:
 - A fact may be inferred by many rules
 - E.g. E <- B
 - E <- C
 - E <- D
 - A rule may have many premises
 - E.g. E <- B /\ C /\ D
- In top-down inference, such rules give rise to
 - Inference trees
 - Backtracking

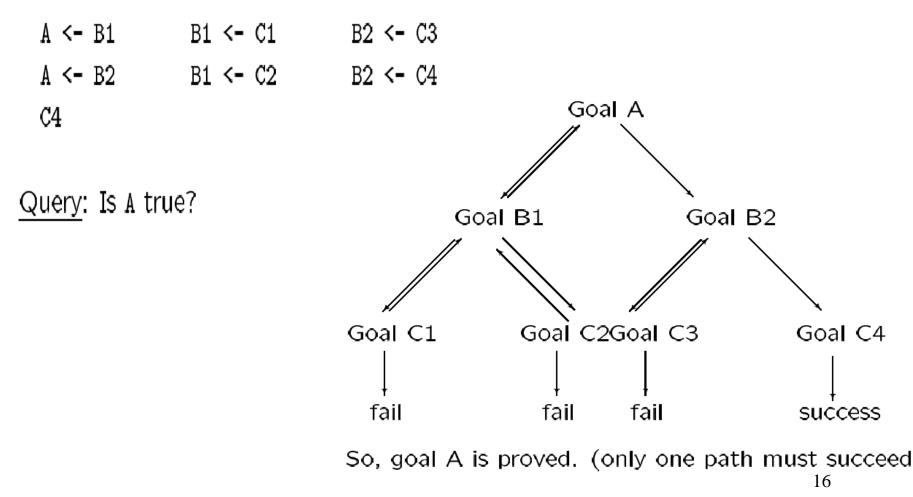
Prolog: top-down reasoning – cont'd



Prolog: top-down reasoning – cont'd

• Example: multiple rules

Rule base:



Prolog: backtracking

• Prolog uses this algorithm for proving a goal by recursively breaking goal down into sub-goals and try to prove these sub-goals until facts are reached.

• To satisfy a goal:

- Try to unify with conclusion of first rule in database
- If successful, apply substitution to first premise, try to satisfy resulting subgoals
- Then apply both substitutions to next sub-goal (premise), and so on...
- If not successful, go on to the next rule in database
- If all rules fail, try again (backtrack) to a previous sub-goal

Prolog: backtracking example 1

Rule base:

Query: Find X such that P(X) is true.

$$p(X)$$

$$q(X), r(X)$$

$$q(X), r(X)$$

$$X=d \rightarrow r(d) \text{ fail}$$

$$X=e \rightarrow r(e) \text{ success (print "X=e")}$$

$$X=f \rightarrow r(f) \text{ fail}$$

$$X=g \rightarrow r(g) \text{ success (print "X=g")}$$