
Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 4

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

Prolog: example 1 – cont’d
Facts

2

Prolog: proof procedure
• Two main processes:

– Unification
– Top-down reasoning

3

Prolog: unification
• First step in proof procedure

• Prolog tries to satisfy a query by unifying it with some conclusion
and see if it is true!

• Process of finding these suitable "assignments" of values to
variables is called unification
– It is really a process of pattern matching to make statements identical
– How does it compare to variable bindings in imperative world

(C/C++/Java/python) ?

4

Prolog: unification – cont’d
• Rules of unification:

Object 1 Object 2 example result

constant free var. 4 X X=4

bound variable free variable X Y Y gets the value of X

free variable bound variable X Y X gets the value of Y

bound variable constant X b fails if X has a value
different then “b”

compound object
with Variables

compound object
with constants

f(X,Y) f(2,3) X=2, Y=3

compound object
with nested
compound object

compound object f(q(2,X),3) f(P,3) succeds if P is free, and
P=q(2,X) .
 (.. more posibilities)

compund object compound object f(3,X) q(3,X) fails, due to different
functors (p is not q)

5

Prolog: unification – cont’d
• Rules of unification:

– A constant unifies only with itself, it cannot unify with any other
constant.

– Two structures unify iff they have the same name, number of
arguments and all the arguments unify.

– Unification requires all instances of the same variable in a rule to get
the same value

6

Prolog: unification – cont’d
• Examples:

7

Prolog: unification – cont’d
• Examples:

– Does p(X,X) unify with p(b,b) ?

– Does p(X,X) unify with p(b,c) ?

– Does p(X,b) unify with p(Y,Y) ?

– Does p(X,Z,Z) unify with p(Y,Y,b) ?

– Does p(X,b,X) unify with p(Y,Y,c) ?
• To make the third arguments equal, we must unify X with c
• To make the second argument equal, we must unify Y with b.
• So, p(X,b,X) becomes p(c,b,c), and p(Y,Y,c) becomes p(b,b,c).
• However, p(c,b,c) and p(b,b,c) are not identical  different atoms  different

semantics

8

Prolog: example 2
• Facts & rules:

• Posing queries:

Notice that we didn’t write a graph traversal algorithm, and we didn’t hard
code the set of questions we can ask in advance. We just define what a graph is…

9

Prolog: proof procedure - revisited
• Two main processes:

 Unification
– Top-down reasoning

10

Prolog: reasoning
• Given a set of facts and rules, we need a mechanism to deduce new

facts and/or prove that a given rule is true or false or has no answer

• There are two techniques to do this:
– Bottom-up reasoning
– Top-down reasoning

11

Prolog: bottom-up reasoning

12

Prolog: top-down reasoning

13

• Multiple rules and multiple premises:

– A fact may be inferred by many rules
• E.g.

– A rule may have many premises
• E.g.

• In top-down inference, such rules give rise to
– Inference trees
– Backtracking

Prolog: top-down reasoning – cont’d

14

Prolog: top-down reasoning – cont’d
• Example: multiple premises

15

Prolog: top-down reasoning – cont’d
• Example: multiple rules

16

Prolog: backtracking
• Prolog uses this algorithm for proving a goal by recursively

breaking goal down into sub-goals and try to prove these sub-goals
until facts are reached.

• To satisfy a goal:
– Try to unify with conclusion of first rule in database
– If successful, apply substitution to first premise, try to satisfy resulting sub-

goals
– Then apply both substitutions to next sub-goal (premise), and so on...
– If not successful, go on to the next rule in database
– If all rules fail,try again (backtrack) to a previous sub-goal

17

Prolog: backtracking example 1

18

	Slide Number 1
	Prolog: example 1 – cont’d
	Prolog: proof procedure
	Prolog: unification
	Prolog: unification – cont’d
	Prolog: unification – cont’d
	Prolog: unification – cont’d
	Prolog: unification – cont’d
	Prolog: example 2
	Prolog: proof procedure - revisited
	Prolog: reasoning
	Prolog: bottom-up reasoning
	Prolog: top-down reasoning
	Prolog: top-down reasoning – cont’d
	Prolog: top-down reasoning – cont’d
	Prolog: top-down reasoning – cont’d
	Prolog: backtracking
	Prolog: backtracking example 1

