Principles of Programming Languages
Lecture 4

Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT

References: Scheme by Dybvig PL Concepts and Constructs by Sethi
Concepts of PL by Sebesta ML for the Working Prog. By Paulson 1
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

Prolog: example 1 — cont’d

Facts
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

?-likes(A,B).

?-likes(D,D).

=eve,B=pie ; A=al,6 B=eve ; ..

and

D=eve ; no
?-likes(eve,W),/person(W).
W=tom

?-likes(al,V), likes(eve,V).
V=eve ; no

Prolog: proof procedure

e Two0 main processes:
— Unification
— Top-down reasoning

Answer:
“Yes/ No™

£ pariable bindings

Programming Environment

Fnowledoe Base;
Fucts & Mrdes

Proof Procedype

Prolog: unification

First step in proof procedure

Prolog tries to satisfy a query by unifying it with some conclusion
and see if it is true!

Process of finding these suitable "assignments'* of values to
variables is called unification
— Itis really a process of pattern matching to make statements identical

— How does it compare to variable bindings in imperative world
(C/C++/Java/python) ?

Prolog: unification — cont’d

* Rules of unification:

Object 1 Object 2 example result

constant free var. 4 X X=4

bound variable free variable X Y Y gets the value of X

free variable bound variable X Y X gets the value of Y

bound variable constant X b fails if X has a value
different then “b”

compound object | compound object | {(X,Y) £(2,3) X=2,Y=3

with Variables

with constants

compound object
with nested
compound object

compound object

f(q(2,X),3) |£(P,3)

succeds if P is free, and
P=q(2,X) .
(.. more posibilities)

compund object

compound object

£(3,X)

q(3,X)

fails, due to different
functors (p is not q)

Prolog: unification — cont’d

* Rules of unification:

— A constant unifies only with itself, it cannot unify with any other
constant.

— Two structures unify iff they have the same name, number of
arguments and all the arguments unify.

— Unification requires all instances of the same variable in a rule to get
the same value

Prolog: unification — cont’d

 Examples:

a(b,C,d,E)
with x(

a(b,C,d,E)

al_,_,-)

a(b,C,d,E)
a(j,£,G,H)

a(b,C,d,E)
a(b,f,G,H)

a(pred(X,j))
a(pred(k,j))

a(pred(X,j))
a(B)

doesn’t unify: a and x differ

no: different # of args

no: b # j

yes: by either {C— £.,G+— d,H— E}
or {C— £,.G— d,E+— H}

yes: {X — k}

yes: {B— pred (X, j) |

Prolog: unification — cont’d

Examples:
— Does p(X,X) unify with p(b,b) ?

— Does p(X,X) unify with p(b,c) ?
— Does p(X,b) unify with p(Y,Y) ?
— Does p(X,Z,Z) unify with p(Y,Y,b) ?

— Does p(X,b,X) unify with p(Y,Y,c) ?

* To make the third arguments equal, we must unify X with c

» To make the second argument equal, we must unify Y with b.
So, p(X,b,X) becomes p(c,b,c), and p(Y,Y,c) becomes p(b,b,c).

However, p(c,b,c) and p(b,b,c) are not identical - different atoms - different
semantics

Prolog: example 2

SN
N

» Facts & rules:

link(a,b), Ilnk(b C), Imk(a,d), link(d,c).
path(N, N
path(L,) - link(L, X), path(X, M).

» Posing queries: _ _
Based on our logical encoding of the graph, we

can then write queries:

?- path(a,c)
yes

?- path(c,a)
no

?- path(a,X), path(X,c)

KX XX

a
b
C
d

Notice that we didn’t write a graph traversal algorithm, and we didn’t hard 9
code the set of questions we can ask in advance. We just define what a graph is...

Prolog: proof procedure - revisited

e Two0 main processes:
v" Unification

— Top-down reasoning ’ i)
Answer:
“Yes/No™

£ partalle bendings

Programming Environment

Enowledge Base:

Proof Procedye

10

Prolog: reasoning

* Given a set of facts and rules, we need a mechanism to deduce new
facts and/or prove that a given rule is true or false or has no answer

» There are two techniques to do this:
— Bottom-up reasoning
— Top-down reasoning

11

Prolog: bottom-up reasoning

Bottom-up (or forward) reasoning. start-
ing from the given facts, apply rules to
infer everything that is true.

e.q., Suppose the fact B and therule A+ B
are given. Then infer that A is true.

Example
Rule base:

p(X,Y,Z) <- q(X),q(Y),q(2).
q(al).
q(a2).

q(an).
Bottom-up inference derives n3 facts of the

form p(a;,a;,a;):

p(al, al, al)
p(al, al, a2)
p(al, a2, a3)

A rule base:

A<-B
B <-C
c

A bottom-up proof:
infer A
rule (1)

infer B

rule (2)
infer C

rule (3)
start

S0, A is proved

(1)
(2)
(3)

12

Prolog: top-down reasoning

¢ Top-down (or backward) reasoning: start-
ing from the query, apply the rules in re-
verse, attempting only those lines of in-
ference that are relevant to the query.

e.q., Suppose the query is A, and the rule
A+ B is given. Then to prove A, try to
prove B.

A rule base:

A <-B
B <-C
C
A top-down proof:
goal A
rule (1)

goal B

| rule (2)
goal C

| rule (3)
SLCCesS

S0, A is proved

(1)
(2)
(3)

13

Prolog: top-down reasoning — cont’d

* Multiple rules and multiple premises:

— Afact may be inferred by many rules
* Eg. E <- B
E <-C
E <- D

— Arule may have many premises

 E.Q.
E<-B/\NC/\D

* Intop-down inference, such rules give rise to
— Inference trees
— Backtracking

14

Prolog: top-down reasoning — cont’d

o Example: multiple premises

Rule base:

(1) A <-B1 /\ B2
(2) Bl <-¢C1/\ C2
(3) B2 <-C3 /\ ¢4

ci1 C2

Query: Is A true?

Goal A
Rule (1)1
Bl A B2

N

Goal B1 Goal B2
Rule (2)] Rule (31
Cl A C2 C3I nCa

NN

Goal C1 Goal C2 Goal C3 Goal C4

| m |

SUCCesS SUCCEeSS SUCCess SUCCESS

So, goal A is proved. (all paths must succeed)

Prolog: top-down reasoning — cont’d

o Example: multiple rules

Rule base:
A <= Bl Bl <= (1
A <= B2 Bl <= (2
¢4

Query: Is A true?

B2 <- (C3
B2 <= (4
Goal A
Goal B1 Goal B2
Goal C1 Goal C2Goal C3 Goal C4
fail fail fail SuUCcess

S0, goal A is proved. (only one path must succeed
16

Prolog: backtracking

Prolog uses this algorithm for proving a goal by recursively
breaking goal down into sub-goals and try to prove these sub-goals
until facts are reached.

To satisfy a goal:

Try to unify with conclusion of first rule in database

If successful, apply substitution to first premise, try to satisfy resulting sub-
goals

Then apply both substitutions to next sub-goal (premise), and so on...
If not successful, go on to the next rule in database
If all rules fail,try again (backtrack) to a previous sub-goal

17

Prolog: backtracking example 1

Rule base:

p(X) = qCX),r(XD.
g(d). qe). q(f). qlg.
r(e). 1r(g.

Query: Find X such that p(X) is true.

pP(X)

a(Xx), r(X)

X=d— r(d) fail
X=e— r(e) success (print " X=¢")
X=f— r(f) fail
X=g— r(g) success (print " X=g")

18

	Slide Number 1
	Prolog: example 1 – cont’d
	Prolog: proof procedure
	Prolog: unification
	Prolog: unification – cont’d
	Prolog: unification – cont’d
	Prolog: unification – cont’d
	Prolog: unification – cont’d
	Prolog: example 2
	Prolog: proof procedure - revisited
	Prolog: reasoning
	Prolog: bottom-up reasoning
	Prolog: top-down reasoning
	Prolog: top-down reasoning – cont’d
	Prolog: top-down reasoning – cont’d
	Prolog: top-down reasoning – cont’d
	Prolog: backtracking
	Prolog: backtracking example 1

