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Prolog: example 1 – cont’d
Facts
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Prolog: proof procedure
• Two main processes:

– Unification
– Top-down reasoning
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Prolog: unification
• First step in proof procedure

• Prolog tries to satisfy a query by unifying it with some conclusion 
and see if it is true!

• Process of finding these suitable "assignments" of values to 
variables is called unification
– It is really a process of pattern matching to make statements identical
– How does it compare to variable bindings in imperative world  

(C/C++/Java/python) ?
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Prolog: unification – cont’d
• Rules of unification:

Object 1                   Object 2             example result 

constant free var. 4 X X=4 

bound variable free variable X Y Y gets the value of X 

free variable bound variable X Y X gets the value of Y 

bound variable constant X b fails if X has a value 
different then “b” 

compound object 
with Variables 

compound object 
with constants 

f(X,Y) f(2,3) X=2, Y=3 

compound object 
with nested 
compound object 

compound object f(q(2,X),3) f(P,3) succeds if P is free, and 
P=q(2,X) . 
     (.. more posibilities ) 

compund object compound object f(3,X) q(3,X) fails, due to different 
functors (p is not q) 
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Prolog: unification – cont’d
• Rules of unification:

– A constant unifies only with itself, it cannot unify with any other 
constant.

– Two structures unify iff they have the same name, number of 
arguments and all the arguments unify.

– Unification requires all instances of the same variable in a rule to get 
the same value
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Prolog: unification – cont’d
• Examples:
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Prolog: unification – cont’d
• Examples:

– Does p(X,X) unify with p(b,b) ?

– Does p(X,X) unify with p(b,c) ?

– Does p(X,b) unify with p(Y,Y) ?

– Does p(X,Z,Z) unify with p(Y,Y,b) ?

– Does p(X,b,X) unify with p(Y,Y,c) ?
• To make the third arguments equal, we must unify X with c
• To make the second argument equal, we must unify Y with b.
• So, p(X,b,X) becomes p(c,b,c), and p(Y,Y,c) becomes p(b,b,c).
• However, p(c,b,c) and p(b,b,c) are not identical  different atoms  different 

semantics
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Prolog: example 2
• Facts & rules:

• Posing queries:

Notice that we didn’t write a graph traversal algorithm, and we didn’t hard
code the set of questions we can ask in advance. We just define what a graph is…
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Prolog: proof procedure - revisited 
• Two main processes:

 Unification
– Top-down reasoning
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Prolog: reasoning
• Given a set of facts and rules, we need a mechanism to deduce new 

facts and/or prove that a given rule is true or false or has no answer

• There are two techniques to do this:
– Bottom-up reasoning
– Top-down reasoning
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Prolog: bottom-up reasoning
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Prolog: top-down reasoning
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• Multiple rules and multiple premises:

– A fact may be inferred by many rules
• E.g.

– A rule may have many premises
• E.g.

• In top-down inference, such rules give rise to 
– Inference trees
– Backtracking

Prolog: top-down reasoning – cont’d 
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Prolog: top-down reasoning – cont’d
• Example: multiple premises
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Prolog: top-down reasoning – cont’d
• Example: multiple rules
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Prolog: backtracking
• Prolog uses this algorithm for proving a goal by recursively 

breaking goal down into sub-goals and try to prove these sub-goals 
until facts are reached. 

• To satisfy a goal:
– Try to unify with conclusion of first rule in database
– If successful, apply substitution to first premise, try to satisfy resulting sub-

goals
– Then apply both substitutions to next sub-goal (premise), and so on...
– If not successful, go on to the next rule in database
– If all rules fail,try again (backtrack) to a previous sub-goal
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Prolog: backtracking example 1
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