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Prolog: backtracking example 3 – cont’d



Prolog: backtracking example 3 – cont’d



Prolog: top-down vs. bottom-up reasoning 
• Prolog uses top-down inference, although some other logic 

programming systems use bottom-up inference (e.g. Coral)

• Each has its own advantages and disadvantages:
– Bottom-up may generate many irrelevant facts
– Top-down may explore many lines of reasoning that fail.

• Top-down and bottom-up inference are logically 
equivalent 
– i.e. they both prove the same set of facts.

• However, only top-down inference simulates program 
execution
– i.e. execution is inherently top down, since it proceeds from the main procedure 

downwards, to subroutines, to sub-subroutines, etc...



Prolog: unification operators
• = unify with operator: X = Y

– Semantically:  unifable test
– Succeeds as long as X and Y can be unified
– X may or may not be instantiated. Y may or may not be instantiated
– As a side effect, X and Y become bound together (refer to the same 

object)
– E.g.

|? a(b,M,c)=a(b,10,d).
false

|? a(b,M,c)=a(b,10,c).
M = 10.

|? a(b(X))=a(b(Y)).
X = Y.



Prolog: unification operators
• \= does not unify with operator: X \= Y

– Semantically: not-unifiable test
– Succeeds as long as X and Y cannot be unified. X and Y must be 

instantiated.  
– E.g.

|? joe \= fred.
true

|? a(b,X,c) \= a(b,Y,c).
false



Prolog: unification operators
• == is already instantiated to operator:  X == Y

– Semantically: identical test 
– Succeeds as long as X and Y are already instantiated to the same object
– No side effects
– E.g.

|? 4 == 2 +2 false
|? a(b,X,c) == a(b,Y,c). false
|? a(b,X,c) == a(b,X,c). true

• =:= is already instantiated to operator:  X =:= Y
– Semantically: identical test after evaluating terms
– E.g.

|? 4 =:= 2 + 2 true
|? a(b,X,c) =:= a(b,Y,c). Error, a cannot be evaluated



Prolog: unification operators
• \== not already instantiated to operator: X \== Y

– Semantically: not-identical test
– Succeeds as long as X and Y are not already instantiated to the same 

object
– No side effects
– E.g.

|? A \== hello. true
|? a(b,X,c) \== a(b,Y,c). true
|? 1 +2 \== 3 true

• =\= is already instantiated to operator:  X =:= Y
– Semantically: not-identical test after evaluating terms 
– E.g.

|? 4 =\= 2 + 2 false



Prolog: operators
• is operator: X is Expr     is(X,Expr)

– Semantically: 1) evaluate second term and 2) test if it is equal to X 
– succeeds a long as X and the arithmetic evaluation of Expr can be unified
– X may or may not be instantiated
– Expr must not contain any uninstantiated variables
– As a side effect, X is instantiated to the arithmetic evaluation of Expr
– E.g.

|? 5 is ( ( 3 * 7 ) + 1 ) //  4
true

|? X is ( ( 3 * 4 ) +10) mod 6
X=4

|? is(2+3,5).   
false

|? is(5,2+3).   
true



Prolog: lists
• A sequence of terms of the form

[t1, t2, t3, t4, ..., tn] where term ti is the ith element of the list

• [ ] is the ‘empty list’. It is an atom not a list.

• Example:    [ a, b, c, [ d, e, [], f ] ]
– A list with 4 elements: a, b, c, and a list with 4 elements:d, e, an empty list, and f
– Prolog supports nested lists

• Can break apart lists using “|”  into [ Head | Tail ] where Head is the 
first item as an object and Tail is the rest of the list (as a list)
– E.g. ?- [H | T] = [a, b, c].

H = a
T = [b,c]

• You can also use the same notation “|”  to construct lists:
– E.g. ?- L = [a | [b, c]].

L = [a, b, c]



Prolog: lists & unification
• Examples:

– [X,Y] =  [john, skates]. X=john Y=skates

– [cat] =  [H|T]. H = cat T = []

– [A, B | C] = [a, b, c, d, e, f]. A = a B = b C = [c, d, e, f]

– [A, b | C] = [a, B, c, d, e, f]. A = a B = b C = [c, d, e, f]

– [[the,Y]|Z] =  [[X,hare],[is,here]]. Y = hare Z = [[is, here]] X = the

– [H|T] =  a(b, c(d)). Error

– [n(X,Y),a(1)] =  [Name,Age]. Name = n(X, Y)  Age = a(1)



Prolog: recursion
• Recursively defined predicate: if a predicate symbol occurs both in in 

the head and and body of a rule, then the rule is recursive.
– E.g.    a(X) :- b(X,Y), a(Y).

This predicate acts like a recursive subroutine.

• Mutually recursive predicates: recursion might be indirect, involving 
several rules.
– E.g.     a(X)  :- b(X,Y), c(Y).

c(Y) :- d(Y,Z), a(Z).
The predicates a and c are said to be mutually recursive.

• Non-linear recursion:
– E.g.       a(X) :- b(X,Y), a(Y), c(Y,Z), a(Z).

This generates what we call a recursive proof tree.



Prolog: recursion
• Recall: how to code recursion?

1. Identify Base case  a rule without body. Comes first.

2. Identify recursive case  recursive rule.



Prolog: recursion – examples
• Factorial:

– Declarative Semantics:  
Factorial is 1 if n = 0, else Factorial is n * factorial (n-1) 

– Java
public long factorial( int n ) {

if( n <= 1 ) // base case
return 1;

else
return n * factorial( n - 1 );

}
factorial(4)  4 *  factorial (3)

3 * factorial (2)
2 * factorial (1)

1 
factorial(4)  4 * 3 * 2 * 1



Prolog: recursion – examples
• Factorial:

– Declarative Semantics:  
Factorial is 1 if n = 0, else Factorial is n * factorial (n-1) 

– Prolog:
factorial(0,1).
factorial(Y,X) :- Y>0,  Y1 is Y-1, factorial(Y1,X1), X is Y*X1.

factorial(3,X)

3 > 0 2 is 3-1 factorial(2,X1) 6 is 3*2

2 > 0 1 is 2-1 factorial(1,X2) 2 is 2*1

1 > 0 0 is 1-1 factorial(0,X3) 1 is 1*1

factorial(0,1)

X3 = 1



Prolog: recursion – examples
• Member of a list:

– Declarative Semantics:
X is a member of a list if X is equal to the first element, or a member 

of any      
sublist of that list

– Prolog:
member(X,[X|T]).
member(X,[Y|T]):-member(X,T).
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