
Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 5

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

Prolog: backtracking example 2

Prolog: backtracking example 3

Prolog: backtracking example 3 – cont’d

Prolog: backtracking example 3 – cont’d

Prolog: top-down vs. bottom-up reasoning
• Prolog uses top-down inference, although some other logic

programming systems use bottom-up inference (e.g. Coral)

• Each has its own advantages and disadvantages:
– Bottom-up may generate many irrelevant facts
– Top-down may explore many lines of reasoning that fail.

• Top-down and bottom-up inference are logically
equivalent
– i.e. they both prove the same set of facts.

• However, only top-down inference simulates program
execution
– i.e. execution is inherently top down, since it proceeds from the main procedure

downwards, to subroutines, to sub-subroutines, etc...

Prolog: unification operators
• = unify with operator: X = Y

– Semantically: unifable test
– Succeeds as long as X and Y can be unified
– X may or may not be instantiated. Y may or may not be instantiated
– As a side effect, X and Y become bound together (refer to the same

object)
– E.g.

|? a(b,M,c)=a(b,10,d).
false

|? a(b,M,c)=a(b,10,c).
M = 10.

|? a(b(X))=a(b(Y)).
X = Y.

Prolog: unification operators
• \= does not unify with operator: X \= Y

– Semantically: not-unifiable test
– Succeeds as long as X and Y cannot be unified. X and Y must be

instantiated.
– E.g.

|? joe \= fred.
true

|? a(b,X,c) \= a(b,Y,c).
false

Prolog: unification operators
• == is already instantiated to operator: X == Y

– Semantically: identical test
– Succeeds as long as X and Y are already instantiated to the same object
– No side effects
– E.g.

|? 4 == 2 +2 false
|? a(b,X,c) == a(b,Y,c). false
|? a(b,X,c) == a(b,X,c). true

• =:= is already instantiated to operator: X =:= Y
– Semantically: identical test after evaluating terms
– E.g.

|? 4 =:= 2 + 2 true
|? a(b,X,c) =:= a(b,Y,c). Error, a cannot be evaluated

Prolog: unification operators
• \== not already instantiated to operator: X \== Y

– Semantically: not-identical test
– Succeeds as long as X and Y are not already instantiated to the same

object
– No side effects
– E.g.

|? A \== hello. true
|? a(b,X,c) \== a(b,Y,c). true
|? 1 +2 \== 3 true

• =\= is already instantiated to operator: X =:= Y
– Semantically: not-identical test after evaluating terms
– E.g.

|? 4 =\= 2 + 2 false

Prolog: operators
• is operator: X is Expr is(X,Expr)

– Semantically: 1) evaluate second term and 2) test if it is equal to X
– succeeds a long as X and the arithmetic evaluation of Expr can be unified
– X may or may not be instantiated
– Expr must not contain any uninstantiated variables
– As a side effect, X is instantiated to the arithmetic evaluation of Expr
– E.g.

|? 5 is ((3 * 7) + 1) // 4
true

|? X is ((3 * 4) +10) mod 6
X=4

|? is(2+3,5).
false

|? is(5,2+3).
true

Prolog: lists
• A sequence of terms of the form

[t1, t2, t3, t4, ..., tn] where term ti is the ith element of the list

• [] is the ‘empty list’. It is an atom not a list.

• Example: [a, b, c, [d, e, [], f]]
– A list with 4 elements: a, b, c, and a list with 4 elements:d, e, an empty list, and f
– Prolog supports nested lists

• Can break apart lists using “|” into [Head | Tail] where Head is the
first item as an object and Tail is the rest of the list (as a list)
– E.g. ?- [H | T] = [a, b, c].

H = a
T = [b,c]

• You can also use the same notation “|” to construct lists:
– E.g. ?- L = [a | [b, c]].

L = [a, b, c]

Prolog: lists & unification
• Examples:

– [X,Y] = [john, skates]. X=john Y=skates

– [cat] = [H|T]. H = cat T = []

– [A, B | C] = [a, b, c, d, e, f]. A = a B = b C = [c, d, e, f]

– [A, b | C] = [a, B, c, d, e, f]. A = a B = b C = [c, d, e, f]

– [[the,Y]|Z] = [[X,hare],[is,here]]. Y = hare Z = [[is, here]] X = the

– [H|T] = a(b, c(d)). Error

– [n(X,Y),a(1)] = [Name,Age]. Name = n(X, Y) Age = a(1)

Prolog: recursion
• Recursively defined predicate: if a predicate symbol occurs both in in

the head and and body of a rule, then the rule is recursive.
– E.g. a(X) :- b(X,Y), a(Y).

This predicate acts like a recursive subroutine.

• Mutually recursive predicates: recursion might be indirect, involving
several rules.
– E.g. a(X) :- b(X,Y), c(Y).

c(Y) :- d(Y,Z), a(Z).
The predicates a and c are said to be mutually recursive.

• Non-linear recursion:
– E.g. a(X) :- b(X,Y), a(Y), c(Y,Z), a(Z).

This generates what we call a recursive proof tree.

Prolog: recursion
• Recall: how to code recursion?

1. Identify Base case a rule without body. Comes first.

2. Identify recursive case recursive rule.

Prolog: recursion – examples
• Factorial:

– Declarative Semantics:
Factorial is 1 if n = 0, else Factorial is n * factorial (n-1)

– Java
public long factorial(int n) {

if(n <= 1) // base case
return 1;

else
return n * factorial(n - 1);

}
factorial(4) 4 * factorial (3)

3 * factorial (2)
2 * factorial (1)

1
factorial(4) 4 * 3 * 2 * 1

Prolog: recursion – examples
• Factorial:

– Declarative Semantics:
Factorial is 1 if n = 0, else Factorial is n * factorial (n-1)

– Prolog:
factorial(0,1).
factorial(Y,X) :- Y>0, Y1 is Y-1, factorial(Y1,X1), X is Y*X1.

factorial(3,X)

3 > 0 2 is 3-1 factorial(2,X1) 6 is 3*2

2 > 0 1 is 2-1 factorial(1,X2) 2 is 2*1

1 > 0 0 is 1-1 factorial(0,X3) 1 is 1*1

factorial(0,1)

X3 = 1

Prolog: recursion – examples
• Member of a list:

– Declarative Semantics:
X is a member of a list if X is equal to the first element, or a member

of any
sublist of that list

– Prolog:
member(X,[X|T]).
member(X,[Y|T]):-member(X,T).

	Slide Number 1
	Prolog: backtracking example 2
	Prolog: backtracking example 3
	Prolog: backtracking example 3 – cont’d
	Prolog: backtracking example 3 – cont’d
	Prolog: top-down vs. bottom-up reasoning
	Prolog: unification operators
	Prolog: unification operators
	Prolog: unification operators
	Prolog: unification operators
	Prolog: operators
	Prolog: lists
	Prolog: lists & unification
	Prolog: recursion
	Prolog: recursion
	Prolog: recursion – examples
	Prolog: recursion – examples
	Prolog: recursion – examples

