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Functional Programming Languages (FPL)
• “Can programming be librated from the Von Neumann style?”

John Backus

• Problems with Imperative programming languages:
– Von Neumann bottle neck (i.e. fetching words across bus)

• Assignment
– Side-effects
– State-based transformation

• FPL alternative:
– Goal? mimic mathematical functions to the greatest extent possible
– How?  Use calculus for the computation
– The program is a mathematical function

• FPL-based solutions:
– Hardware: Symbolics Machine, TI Explorer…
– Software: Lisp (Scheme && Racket) , ML, Haskell, Miranda …
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FPL: Mathematical v.s. Imperative
• Recall: how do imperative functions work?

– Specify a sequence of operations on values in memory to produce a value
– Evaluation is controlled by sequencing and iteration

• Why are mathematical functions different?
– The value is defined and not produced
– Evaluation order is controlled by recursion and conditional expressions

• Example: 
– Write a procedure to implement the following function f(x) = x * x / 3

• Imperative: procedure float foo( var int x )
int product;
float quotient ;
product  := x * x;
quotient := product/ 3;
return quotient;

• Functional: ??
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FPL: Desiderata
1. A program consists of:

– Function definitions 
– Function calls
– There is no other structure.

2. Control flow:
– Recursion and function application is the only way to achieve repetition

3. No assignment
– Values are bound to values only through parameter association
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4. No side effects
– A function may not change its parameters
– A function cannot do input or output

5. No variable declaration
– No explicit typing

6. Implicit memory management:
– no new or free (malloc/realloc/delete)
– Program unaware of underlying memory structure

7. Referential transparency:
– Execution of a function always produce the same result when given the 

same parameters
– Implication: all variables in a function body must be local to that 

function; why?
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8. Functions can be:
– Passed as an argument
– Returned from a function
– Represented by a data structure and that data structure can then be 

evaluated

• Is this possible?
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Scheme: Introduction
• History:

• Scheme has a denotational semantics based on the lambda 
calculus: that is the meaning of all syntactic programming constructs in 
the language are defined in terms of mathematical functions

• A Scheme program consists of function definitions and calls. 
There is no other structure.

• A variable assumes the type of the value that is bound to them 
at run-time. So, the type of a variable changes dynamically 
during execution

• Automatic garbage collection.
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Scheme: Expressions
• An expression in Scheme has the form  (E1 E2 E3…. En)

– E1 evaluates to an operator 
– E2 through En are evaluated as operands

• Examples:
– (+ a b c) ; (a + b + c)
– (+ 1 (* 2 3) 4 5) ; (1 + (2 * 3) + 4 + 5)
– (+ (- 6 3) (/ 10 2) 2 (* 2 3) ) ; 16
– (<=  (- 5 3) (+ 2 (* 3 3)) 14)
– (not  (= (sqrt (+ (expt 3 x) 1) y))
– (max (+ 2 3) (abs –4) (remainder 12 5))  

• Postfix v.s. Infix:
– Scheme expressions use prefix notation while imperative languages 

use infix notation, which is better?
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Scheme: Basic Data Types
Expression

Sequence
Atom

List StringNumberSymbol

3          7/13      23.45
(3 4 5 6)

“Rosebud”‘Rosebud

(+ 12 7 32 78)

(bob (has (arms 2) (legs 2)))
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Scheme: Evaluating Expressions
• Using eval FORM

– Evaluate  compute/fetch value of an expression
– Form       an expression to be evaluated
– Rules:

• A number evaluates to itself
76  76

• A variable evaluates to its value
(define x 54)  x = 54

• A quoted symbol evaluates to the symbol itself:
‘z  z

• A string evaluates to itself
“trondheim”   “trondheim”

• A single quoted list evaluates to a simple list of symbols
‘(+ 2 3)  (+ 2 3)

• An unquoted list evaluates to a function call
(+ 2 3)  5
(a b c)   ERROR: attempt to call an undeclared function ‘a
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Scheme: Evaluating Order
• Scheme follows a depth-first applicative evaluation order

• Example: (f1 (f2 a (f3 b)) c 8 (f2 3 2))

f1

f2

a f3

b

c 8 f2

3 2
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Scheme: Lists
• A list is denoted by a collection of items enclosed in parentheses

• The empty list is denoted ()
– The list (2 4 6 8 10) is the same as (2  . (4  . (6  . (8  . (10  . ( ) ) ) ) ) ) 
– Improper list: a list that does not end with an empty list.

• Example:
– (a (b c) (d) ) 

12



University of Toronto

CSC324: Principles of Programming Languages

Scheme: Lists

• Note: Lists should be quoted when fed to the interpreter, otherwise the 
interpreter will try to apply the first item in the list to the other items

– E.g.
]=> (2 4 6 8)
error: procedure application: expected procedure, given: 2; 
arguments were: 4 6 8

]=> ' (2 4 6 8) 
(2 4 6 8)

]=> (quote (2 4 6 8))
(2 4 6 8)
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Scheme: Lists cont’d
• Constructing Lists:

– (cons arg1 arg2)
• The second argument to cons must be a list
• E.g.

(cons 'peanut '(butter and jelly)) ; (peanut butter and jelly)
(cons '(banana and) '(peanut butter and jelly))    ; ((banana and) peanut 

butter and jelly)

– (append arg1 arg2)
• Returns the list formed by joining the elements of a and b together.
• Precondition: arg1 and arg2 must be lists

– (list arg1 arg2 … argn)
• E.g.

(list 2 4 6 8 10)
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Scheme: Lists cont’d
• Internal implementation

– Linked list storage management used
– Head: first member of the list. 

Tail: everything else other than the head
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Scheme: Lists cont’d
• Useful Operations:

– (car list) ; return head of the list        , pronounced car
– (cdr list) ; return tail of the list           , pronounced coulder
– (cadr list) ; eqv to (car  (cdr list))           , pronounced cahder
– (cdar list) ; eqv to (cdr  (car list))           , pronounced couldaher
– (caar list) ; eqv to (car  (car list)) , pronounced cahar
– (cddr list) ; eqv to (cdr  (cdr list))          , pronounced coulduhder
– (cadar list) ; eqv to (car  (cdr (car list))) , pronounced cahdauher
– (caadr list) ; eqv to (car  (cadr list))        , pronounced cahader
– (cdddr list) ; eqv to (cdr  (cddr list))       , pronounced couldduhduhder
– (cadadr list) ; eqv to ….
– (reverse list) ; reverse the order of the elements in list
– (member element list);

• Example:

16



University of Toronto

CSC324: Principles of Programming Languages

Scheme: Lists cont’d
• Examples:

]=> (define lista '(1 2 5 67 3 2 5 88)) 
]=>(define fruits '(apple pear orange banana)) 
]=>(define colors '(red blue green yellow orange)) 
]=>(define prices '((banana 0.98) (orange 0.33) (lemon 0.20))) 

]=>(car lista) 
1 

]=>(car colors) 
red

]=>(cdr lista) 
(2 5 67 3 2 5 88) 

]=>(cdr colors) 
(blue green yellow orange)

]=>(cadr colors)         ; (car  (cdr list))
blue 

]=>(cadr fruits) 
pear 

]=>(caddr fruits) ; (car  (cdr  (cdr list))) 
orange 

]=>(cdddr fruits)    ; (cdr  (cdr  (cdr list))) 
(banana) 

]=>(car prices) 
(banana 0.98) 

]=>(caar prices)      ; (car  (car list))
banana 

]=>(cadar prices) ;   (car  (cdr (car list))) 
0.98
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Scheme: Expressions/ Short Circuit Eval
• (and ….)

– E.g.
(and (try-first-thing)

(try-second-thing)
(try-third-thing)

)
– If the three calls all return true values, and returns the value of the 

last one. 
– If any of them returns #f, however, none of the rest are evaluated, and #f is 

returned as the value of the overall expression.
• (or ….)

– E.g.
(or (try-first-thing)

(try-second-thing)
(try-third-thing)

)
– Likewise, it stops when it gets a true value
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