
University of Toronto

Wael Aboulsaadat
wael@cs.toronto.edu

http://portal.utoronto.ca/

Principles of Programming Languages
Lecture 9B

1

Acknowledgment: parts of these slides are based on material by Diane Horton & Eric Joanis @ UoT
References: Scheme by Dybvig PL Concepts and Constructs by Sethi

Concepts of PL by Sebesta ML for the Working Prog. By Paulson
Prog. in Prolog by Clocksin and Mellish PL Pragmatics by Scott

University of Toronto

CSC324: Principles of Programming Languages

Functional Programming Languages (FPL)
• “Can programming be librated from the Von Neumann style?”

John Backus

• Problems with Imperative programming languages:
– Von Neumann bottle neck (i.e. fetching words across bus)

• Assignment
– Side-effects
– State-based transformation

• FPL alternative:
– Goal? mimic mathematical functions to the greatest extent possible
– How? Use calculus for the computation
– The program is a mathematical function

• FPL-based solutions:
– Hardware: Symbolics Machine, TI Explorer…
– Software: Lisp (Scheme && Racket) , ML, Haskell, Miranda …

ALU

RAMCPU

System Bus

2

University of Toronto

CSC324: Principles of Programming Languages

FPL: Mathematical v.s. Imperative
• Recall: how do imperative functions work?

– Specify a sequence of operations on values in memory to produce a value
– Evaluation is controlled by sequencing and iteration

• Why are mathematical functions different?
– The value is defined and not produced
– Evaluation order is controlled by recursion and conditional expressions

• Example:
– Write a procedure to implement the following function f(x) = x * x / 3

• Imperative: procedure float foo(var int x)
int product;
float quotient ;
product := x * x;
quotient := product/ 3;
return quotient;

• Functional: ??

3

University of Toronto

CSC324: Principles of Programming Languages

FPL: Desiderata
1. A program consists of:

– Function definitions
– Function calls
– There is no other structure.

2. Control flow:
– Recursion and function application is the only way to achieve repetition

3. No assignment
– Values are bound to values only through parameter association

4

University of Toronto

CSC324: Principles of Programming Languages

4. No side effects
– A function may not change its parameters
– A function cannot do input or output

5. No variable declaration
– No explicit typing

6. Implicit memory management:
– no new or free (malloc/realloc/delete)
– Program unaware of underlying memory structure

7. Referential transparency:
– Execution of a function always produce the same result when given the

same parameters
– Implication: all variables in a function body must be local to that

function; why?

5

FPL: Desiderata

University of Toronto

CSC324: Principles of Programming Languages

8. Functions can be:
– Passed as an argument
– Returned from a function
– Represented by a data structure and that data structure can then be

evaluated

• Is this possible?

6

FPL: Desiderata

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Introduction
• History:

• Scheme has a denotational semantics based on the lambda
calculus: that is the meaning of all syntactic programming constructs in
the language are defined in terms of mathematical functions

• A Scheme program consists of function definitions and calls.
There is no other structure.

• A variable assumes the type of the value that is bound to them
at run-time. So, the type of a variable changes dynamically
during execution

• Automatic garbage collection.

7

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Expressions
• An expression in Scheme has the form (E1 E2 E3…. En)

– E1 evaluates to an operator
– E2 through En are evaluated as operands

• Examples:
– (+ a b c) ; (a + b + c)
– (+ 1 (* 2 3) 4 5) ; (1 + (2 * 3) + 4 + 5)
– (+ (- 6 3) (/ 10 2) 2 (* 2 3)) ; 16
– (<= (- 5 3) (+ 2 (* 3 3)) 14)
– (not (= (sqrt (+ (expt 3 x) 1) y))
– (max (+ 2 3) (abs –4) (remainder 12 5))

• Postfix v.s. Infix:
– Scheme expressions use prefix notation while imperative languages

use infix notation, which is better?
8

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Basic Data Types
Expression

Sequence
Atom

List StringNumberSymbol

3 7/13 23.45
(3 4 5 6)

“Rosebud”‘Rosebud

(+ 12 7 32 78)

(bob (has (arms 2) (legs 2)))
9

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Evaluating Expressions
• Using eval FORM

– Evaluate compute/fetch value of an expression
– Form an expression to be evaluated
– Rules:

• A number evaluates to itself
76 76

• A variable evaluates to its value
(define x 54) x = 54

• A quoted symbol evaluates to the symbol itself:
‘z z

• A string evaluates to itself
“trondheim” “trondheim”

• A single quoted list evaluates to a simple list of symbols
‘(+ 2 3) (+ 2 3)

• An unquoted list evaluates to a function call
(+ 2 3) 5
(a b c) ERROR: attempt to call an undeclared function ‘a

10

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Evaluating Order
• Scheme follows a depth-first applicative evaluation order

• Example: (f1 (f2 a (f3 b)) c 8 (f2 3 2))

f1

f2

a f3

b

c 8 f2

3 2

11

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Lists
• A list is denoted by a collection of items enclosed in parentheses

• The empty list is denoted ()
– The list (2 4 6 8 10) is the same as (2 . (4 . (6 . (8 . (10 . ())))))
– Improper list: a list that does not end with an empty list.

• Example:
– (a (b c) (d))

12

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Lists

• Note: Lists should be quoted when fed to the interpreter, otherwise the
interpreter will try to apply the first item in the list to the other items

– E.g.
]=> (2 4 6 8)
error: procedure application: expected procedure, given: 2;
arguments were: 4 6 8

]=> ' (2 4 6 8)
(2 4 6 8)

]=> (quote (2 4 6 8))
(2 4 6 8)

13

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Lists cont’d
• Constructing Lists:

– (cons arg1 arg2)
• The second argument to cons must be a list
• E.g.

(cons 'peanut '(butter and jelly)) ; (peanut butter and jelly)
(cons '(banana and) '(peanut butter and jelly)) ; ((banana and) peanut

butter and jelly)

– (append arg1 arg2)
• Returns the list formed by joining the elements of a and b together.
• Precondition: arg1 and arg2 must be lists

– (list arg1 arg2 … argn)
• E.g.

(list 2 4 6 8 10)

14

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Lists cont’d
• Internal implementation

– Linked list storage management used
– Head: first member of the list.

Tail: everything else other than the head

15

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Lists cont’d
• Useful Operations:

– (car list) ; return head of the list , pronounced car
– (cdr list) ; return tail of the list , pronounced coulder
– (cadr list) ; eqv to (car (cdr list)) , pronounced cahder
– (cdar list) ; eqv to (cdr (car list)) , pronounced couldaher
– (caar list) ; eqv to (car (car list)) , pronounced cahar
– (cddr list) ; eqv to (cdr (cdr list)) , pronounced coulduhder
– (cadar list) ; eqv to (car (cdr (car list))) , pronounced cahdauher
– (caadr list) ; eqv to (car (cadr list)) , pronounced cahader
– (cdddr list) ; eqv to (cdr (cddr list)) , pronounced couldduhduhder
– (cadadr list) ; eqv to ….
– (reverse list) ; reverse the order of the elements in list
– (member element list);

• Example:

16

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Lists cont’d
• Examples:

]=> (define lista '(1 2 5 67 3 2 5 88))
]=>(define fruits '(apple pear orange banana))
]=>(define colors '(red blue green yellow orange))
]=>(define prices '((banana 0.98) (orange 0.33) (lemon 0.20)))

]=>(car lista)
1

]=>(car colors)
red

]=>(cdr lista)
(2 5 67 3 2 5 88)

]=>(cdr colors)
(blue green yellow orange)

]=>(cadr colors) ; (car (cdr list))
blue

]=>(cadr fruits)
pear

]=>(caddr fruits) ; (car (cdr (cdr list)))
orange

]=>(cdddr fruits) ; (cdr (cdr (cdr list)))
(banana)

]=>(car prices)
(banana 0.98)

]=>(caar prices) ; (car (car list))
banana

]=>(cadar prices) ; (car (cdr (car list)))
0.98

17

University of Toronto

CSC324: Principles of Programming Languages

Scheme: Expressions/ Short Circuit Eval
• (and ….)

– E.g.
(and (try-first-thing)

(try-second-thing)
(try-third-thing)

)
– If the three calls all return true values, and returns the value of the

last one.
– If any of them returns #f, however, none of the rest are evaluated, and #f is

returned as the value of the overall expression.
• (or ….)

– E.g.
(or (try-first-thing)

(try-second-thing)
(try-third-thing)

)
– Likewise, it stops when it gets a true value

18

	Slide Number 1
	Functional Programming Languages (FPL)
	FPL: Mathematical v.s. Imperative
	FPL: Desiderata
	FPL: Desiderata
	FPL: Desiderata
	Scheme: Introduction
	Scheme: Expressions
	Scheme: Basic Data Types
	Scheme: Evaluating Expressions
	Scheme: Evaluating Order
	Scheme: Lists
	Scheme: Lists
	Scheme: Lists cont’d
	Scheme: Lists cont’d
	Scheme: Lists cont’d
	Scheme: Lists cont’d
	Scheme: Expressions/ Short Circuit Eval

