\V

Analysis of Algorithms

i

Input Algorithm

N

© 2010 Goodrich, Tamassia Analysis of Algorithms

N

Running Time

a Most algorithms transform
input objects into output
objects.

a The running time of an
algorithm typically grows

with the input size.

a Average case time is often
difficult to determine.

o We focus on the worst case
running time.
= Easier to analyze

= Crucial to applications such as
games, finance and robotics

Running Time

120

100 -

20 11

© 2010 Goodrich, Tamassia Analysis of Algorithms

80 -

60 -

40 -

O best case
B average case
B worst case

1000 2000 3000 4000
Input Size

Experimental Studies

N
\J

a Write a program 2000 :
implementing the 8000 - "
algorithm 7000 - .

a Run the program with ~ 6000 - -
inputs of varying size and E 5000 -
composition 2 4000 - I;’-

o Use a method like SR —
System.currentTimeMillis() to A
get an accurate measure o
of the actual running time 7 .4

a Plot the results P : o o

Input Size

© 2010 Goodrich, Tamassia Analysis of Algorithms 3

Limitations of Experiments

N

a It is necessary to implement the
algorithm, which may be difficult

a Results may not be indicative of the
running time on other inputs not included
in the experiment.

a In order to compare two algorithms, the
same hardware and software
environments must be used

© 2010 Goodrich, Tamassia Analysis of Algorithms 4

Theoretical Analysis

N

a Uses a high-level description of the
algorithm instead of an implementation

a Characterizes running time as a
function of the input size, n.

a Takes into account all possible inputs

a Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

© 2010 Goodrich, Tamassia Analysis of Algorithms 5

N

a

a

© 2010 Goodrich, Tamassia

Pseudocode

High-level description
of an algorithm

More structured than
English prose

Less detailed than a
program

Preferred notation for
describing algorithms
Hides program design
Issues

Example: find max
element of an array

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax <« A[0]
fori<1ton-1do
If A[l] > currentMax then
currentMax « AJi]
return currentiMax

Analysis of Algorithms 6

Pseudocode Details %ZQ

q
a Control flow o Method call
= if...then ... [else ...] var.method (arg [, arg...])
= while ... do ... o Return value
= repeat ... until ... return expression
= for...do... o Expressions
= Indentation replaces braces <—'(°if5'fi9nme;1t)
_ ike = in Java
Q Methqd declaration _ Equality testing
Algorithm method (arg [, arg...]) (like == in Java)
Input ... n? Superscripts and other
Output ... mathematical

formatting allowed

© 2010 Goodrich, Tamassia Analysis of Algorithms

The Random Access Machine
(RAM) Model

N

o A CPU l|%

a An potentially unbounded

bank of memory cells,
each of which can hold an
arbitrary number or
character

Memory cells are numbered and accessing
any cell in memory takes unit time.

© 2010 Goodrich, Tamassia Analysis of Algorithms 8

Seven Important Functions

N

L/

a Seven functions that

often appear in algorithm 1E+30 .
analysis: 1E+28 71 — Cubic
ysis. 1E+26 _
m Constant = 1 1E+24 — Quadratic
Logarithmic = log n 1E+22 1= _ s
% g g {420 Linear
= N-Log-N ~ nlogn ‘C 1E+16 =7
i~ ~ N2 — 1E+14
= QuaFIratlc n iEl>
s Cubic» nd 1E+10
= Exponential ~ 2" 1E+8
1E+6
1E+4
o Inalog-log chart, the o, | 2
slope of the line 1E+0 -
corresponds to the 1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
growth rate n
© 2010 Goodrich, Tamassia Analysis of Algorithms 9

Functions Graphed
Using "Normal” Scale

N

s
a0
150
00

gn) =1

g(n) = n?

g(n) =1lgn

g(n) =n

Analysis of Algorithms

© 2010 Stallmann

Slide by Matt Stallmann
included with permission.

bbbbb

nnnnn

219
LEEHY
LEENS
—
— 14E19
12609
16419
250
BENE
200
150
100
2648 |
s
o 3
o 10 20 0 0 s0 0 0 0

10

Primitive Operations

N

a Basic computations Examples:
performed by an algorithm DIes:
= Evaluating an

a Identifiable in pseudocode expression

a Largely independent from the = Assigning a value

_ to a variable
programming language . Indexing into an

a Exact definition not important array
(we will see why later) = Calling a method
o Assumed to take a constant . qugﬁhrgéng from a
amount of time in the RAM
model

© 2010 Goodrich, Tamassia Analysis of Algorithms 11

Counting Primitive Operations

N

o By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax <« A[0] 2
fori<1ton-1do 2N

If A[l] > currentMax then 2(n—1)
currentMax <« AJi] 2(n—1)
{ increment counter i } 2(n—1)
return currentMax 1
Total 8n-2

© 2010 Goodrich, Tamassia Analysis of Algorithms 12

—
—3

[]

Estimating Running Time

N

a Algorithm arrayMax executes 8n — 2 primitive
operations in the worst case. Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

a Let T(n) be worst-case time of arrayMax. Then
a(@8n-2)<T(n) <b(8n-2)
a Hence, the running time T(n) is bounded by two
linear functions

© 2010 Goodrich, Tamassia Analysis of Algorithms 13

Growth Rate of Running Time

N

a Changing the hardware/ software
environment

» Affects T(n) by a constant factor, but
= Does not alter the growth rate of T(n)

a The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax

)

© 2010 Goodrich, Tamassia Analysis of Algorithms 14

N

Slide by Matt Stallmann
included with permission.

Why Growth Rate Matters

f r?;tlme timeforn+1 | timefor2n | timefor4n
clgn clg(n+1) c(lgn+1) c(lgn + 2)
cn c(h+1) 2Cn 4cn
~cnlgn | 2cnign+ | 4cnign+ | runtime
cnlign uadruples
+ Ccn 2cn 4Acn q P
P— when
C N2 ~cn?2+2cn 4c n? 16¢ n? problem
size doubles
cnd ~cn3+ 3cn? 8c n3 64c n3
c 2" c 2 N+l c22n c24n

© 2010 Stallmann

Analysis of Algorithms

15

N

Slide by Matt Stallmann
included with permission.

Comparison of Two Algorithms

insertion sort vs merge sort insertion sort is
n’/4
9000 :
@ 8000 merge sort Is
£ 7000 £ 2nlgn
@ 6000 / - :
2 000 V. sort a million items?
E 4000 - insertion sort takes
g 3000 roughly 70 hours
£ 2000 while
£ 1000
. merge sort takes
50 100 150 200 roughly 40 seconds
number of elements
—— insertion sort —— merge sort This is a slow machine, but if

© 2010 Stallmann

100 x as fast then it's 40 minutes
versus less than 0.5 seconds

Analysis of Algorithms 16

Constant Factors

N

L/

1E+26 .
o The growth rate is 1e+24 | - - -Quadratic =
1E+22 ++ — Quadratic
not affected by 1E490 L - Linear ,
m constant factors or 1E+18 1| — Linear ;
= lower-order terms 1E+16 '
= 1E+14 ‘
o Examples = 1E+12
= 102n + 105 is a linear fgig
function 1E+6 +————
m 10°n?2+10%nis a 1E+4
quadratic function ~ 1E+2
1E+0
1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
© 2010 Goodrich, Tamassia Analysis of Algorithms 17

f‘\

B|g -Oh Notation

10,000
a Given functions f(n) and ---3n
g(n), we say that f(n) is 1000 1| —2n+10
O(g(n)) if there are
positive constants —

¢ and n, such that 190
f(n) < cg(n) for n>n,

10
o Example: 2n + 10 is O(n)
m 2n+10<cn

m (C-2)n>10
= Nn>10/(c-2)
= Pickc=3and n,=10

© 2010 Goodrich, Tamassia Analysis of Algorithms

10

100

18

1,000

Big-Oh Example

G
1,000,000
) —nN2
a Example: the function 100,000 || ---100n
n2is not O(n) | . 10n
m nN?2<ch 10,000 H —n
m N<C
= The above inequality 1,000
cannot be satisfied
since ¢ must be a 100
constant
10
1
1 10 100 1,000

© 2010 Goodrich, Tamassia Analysis of Algorithms 19

More Big-Oh Examples Q’(

N

e 7n-2
7n-2 is O(n)
need ¢ > 0 and n, > 1 such that 7n-2 < cen for n > n,
this is true forc =7and ny =1

m3n3+ 20n° + 5
3n3 + 20n? + 5is O(n3)
need c > 0 and ny > 1 such that 3n3 + 20n2 + 5 < cen3 for n > n,
this is true for c = 4 and n, = 21

m3logn+5

3log n+ 5is O(log n)
need c > 0 and ny, > 1 such that 3 log n + 5 < celog n for n > n,

this is true for c = 8 and ny = 2
© 2010 Goodrich, Tamassia Analysis of Algorithms 20

N

Big-Oh and Growth Rate

a The big-Oh notation gives an upper bound on the
growth rate of a function

a The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

a We can use the big-Oh notation to rank functions
according to their growth rate

f(n) is O(g(n))

g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

© 2010 Goodrich, Tamassia

Analysis of Algorithms

21

Big-Oh Rules

A
N

a If is f(n) a polynomial of degree d, then f(n) is
O(n9), i.e.,
1. Drop lower-order terms
2. Drop constant factors

a Use the smallest possible class of functions
= Say "2n is O(n)” instead of “2n is O(n?)”

a Use the simplest expression of the class
= Say "3n +5is O(n)” instead of “3n + 5 is O(3n)”

© 2010 Goodrich, Tamassia Analysis of Algorithms 22

Asymptotic Algorithm Analysis

N

a The asymptotic analysis of an algorithm determines
the running time in big-Oh notation
a To perform the asymptotic analysis

= We find the worst-case number of primitive operations
executed as a function of the input size

= We express this function with big-Oh notation

o Example:
= We determine that algorithm arrayMax executes at most
8n — 2 primitive operations
= We say that algorithm arrayMax “runs in O(n) time”
a Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

© 2010 Goodrich, Tamassia Analysis of Algorithms 23

Computing Prefix Averages

N

o We further illustrate

. S 35
asymptotic analysis with @ X
two algorithms for prefix 0919
averages o5

a The i-th prefix average of 20 |

an array X is average of the
first (i + 1) elements of X: 15 4

Ali] = (X[0] + X[1] + ... + X[iD/(i+1) 10-

a Computing the array A of S 1
prefix averages of another 0 - I
array X has applications to 1 23456 7

financial analysis

© 2010 Goodrich, Tamassia Analysis of Algorithms

24

Prefix Averages (Quadratic)

N

The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A < new array of n integers n

fori<Oton—-1do n
s « X|[0] n
forj< 1toido 1+2+..+(nh-1)

S <« S+ X|j] 1+2+..+(n-1)

All] «s/(1+1) n

return A 1

© 2010 Goodrich, Tamassia Analysis of Algorithms 25

Arithmetic Progression

N

a The running time of

prefixAveragesl is
O(1+2+...+n)

o The sum of the first n
integersisn(n+1)/2

= There is a simple visual
proof of this fact

a Thus, algorithm
prefixAveragesl runs in

O P N W B~ O1 o0

O(n?) time

© 2010 Goodrich, Tamassia Analysis of Algorithms 26

Prefix Averages (Linear)

N

The following algorithm computes prefix averages in
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers

A < new array of n integers n
S« 0 1
fori<0ton-1do n
S <« S+ X]|i] n
All] «s/(1+1) n
return A 1

Output array A of prefix averages of X #operations

Algorithm prefixAverages2 runs in O(n) time

© 2010 Goodrich, Tamassia Analysis of Algorithms

27

N

Summations

Proof techniques
Basic probability

© 2010 Goodrich, Tamassia

Math you need to Review

Logarithms and Exponents

o properties of logarithms:

logy(xy) = logyx + logpy
log, (x/y) = log,x - log,y
logyxa = alogyx
log,a = log,a/log,b

a properties of exponentials:
a(b+c) — aba C
abc i (ab)c
ab /ac i a(b-c)
b=a Iogab
bc = a c*Iogab

Analysis of Algorithms 28

Relatives of Big-Oh J

N

big-Omega
a f(n) is Q(g(n)) if there is a constant ¢ > 0
and an integer constant n, > 1 such that
f(n) > ceg(n) for n > n,

big-Theta

= f(n) is ®(g(n)) if there are constants ¢’ > 0 and c”
> 0 and an integer constant n, > 1 such that
c'eg(n) < f(n) < c"eg(n) for n > n,

© 2010 Goodrich, Tamassia Analysis of Algorithms 29

Intuition for Asymptotic
Notation

N

Big-Oh

= f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)

big-Omega

x f(n) is Q(g(n)) if f(n) is asymptotically
greater than or equal to g(n)

big-Theta

x f(n) is ®(g(n)) if f(n) is asymptotically
equal to g(n)

© 2010 Goodrich, Tamassia Analysis of Algorithms 30

Example Uses of the

JReIatives of Big-Oh

m 5n?is Q(n?)
f(n) 1s (g(n)) if there is a constant ¢ > 0 and an integer constantn, > 1
such that f(n) > ceg(n) for n > n,
letc=5andn,=1
m 5n2is Q(n)
f(n) is Q(g(n)) if there is a constant ¢ > 0 and an integer constantn, > 1
such that f(n) > ceg(n) for n > n,
letc=1andn,=1
m 5n2is ®(n?)
f(n) is ®(g(n)) if it is Q(n2) and O(n?). We have already seen the former,

for the latter recall that f(n) is O(g(n)) if there is a constant ¢ > 0 and an
Integer constant n, > 1 such that f(n) < ceg(n) for n > n,

Letc=5andn,=1

N

© 2010 Goodrich, Tamassia Analysis of Algorithms 31

