Analysis of Algorithms

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
- Easier to analyze

- Crucial to applications such as games, finance and robotics

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time
- Plot the results

Limitations of Experiments

a It is necessary to implement the algorithm, which may be difficult

- Results may not be indicative of the running time on other inputs not included in the experiment.
\square In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
\square Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Algorithm $\operatorname{arrayMax}(\boldsymbol{A}, \boldsymbol{n})$
Input array \boldsymbol{A} of \boldsymbol{n} integers
Output maximum element of \boldsymbol{A} currentMax $\leftarrow A[0]$ for $i \leftarrow 1$ to $n-1$ do
if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$
return currentMax

Pseudocode Details

- Control flow
- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...])
Input ...
Output ...

- Method call var.method (arg [, arg...])
- Return value return expression
- Expressions
\leftarrow Assignment (like = in Java)
= Equality testing (like == in Java)
n^{2} Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

- A CPU

- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and accessing any cell in memory takes unit time.

Seven Important Functions

- Seven functions that often appear in algorithm ${ }^{1 E+30}$ analysis:
- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- $N-$ Log- $\mathrm{N} \approx n \log n$
- Quadratic $\approx n^{2}$
- Cubic $\approx n^{3}$
- Exponential $\approx \mathbf{2}^{n}$
- In a log-log chart, the slope of the line corresponds to the growth rate

Functions Graphed

Slide by Matt Stallmann included with permission.

Using "Normal" Scale

$$
g(n)=1
$$

(c) 2010 Stallmann

$$
g(n)=n \lg n=g(n)=2^{n}
$$

$$
g(n)=n^{3}
$$

Analysis of Algorithms

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

Counting Primitive Operations

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm \(\operatorname{arrayMax}(A, n)\)
    currentMax \(\leftarrow A[0]\)
    for \(i \leftarrow 1\) to \(n-1\) do
        if \(A[i]>\) currentMax then
        currentMax \(\leftarrow A[i]\)
    \{ increment counter \(\boldsymbol{i}\) \}
    return currentMax
```

for $i \leftarrow 1$ to $n-1$ do if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$
\{ increment counter \boldsymbol{i} \}
return currentMax
\# operations
$2 n$
$2(n-1)$
$2(n-1)$
$2(n-1)$
1

Total $8 \boldsymbol{n}-2$

Estimating Running Time

- Algorithm arrayMax executes $8 \boldsymbol{n}-2$ primitive operations in the worst case. Define: $a=$ Time taken by the fastest primitive operation $b=$ Time taken by the slowest primitive operation
- Let $T(n)$ be worst-case time of arrayMax. Then

$$
\boldsymbol{a}(8 \boldsymbol{n}-2) \leq \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{b}(8 \boldsymbol{n}-2)
$$

- Hence, the running time $\boldsymbol{T}(\boldsymbol{n})$ is bounded by two linear functions

Growth Rate of Running Time

- Changing the hardware/ software environment
- Affects $T(n)$ by a constant factor, but - Does not alter the growth rate of $\boldsymbol{T}(\boldsymbol{n})$
- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm arrayMax

Slide by Matt Stallmann included with permission.

Why Growth Rate Matters

if runtime is...	time for $\mathrm{n}+1$	time for 2 n	time for 4 n	
$c \lg n$	$c \lg (\mathrm{n}+1)$	$c(\lg \mathrm{n}+1)$	$c(\lg \mathrm{n}+2)$	
c n	$c(\mathrm{n}+1)$	2c n	4 c n	runtime quadruples when problem size doubles
c $n \lg \mathrm{n}$	$\begin{gathered} \sim c n \lg n \\ \\ +c n \end{gathered}$	$\begin{aligned} & 2 \mathrm{c} n \lg \mathrm{n}+ \\ & 2 \mathrm{cn} \end{aligned}$	$\underset{4 c n}{4 c n \lg n+}$	
$\mathrm{cn}{ }^{2}$	$\sim c n^{2}+2 c n$	$4 \mathrm{c} \mathrm{n}^{2}$	$16 \mathrm{c} \mathrm{n}^{2}$	
$\mathrm{c} \mathrm{n}^{3}$	$\sim \mathrm{c} \mathrm{n}^{3}+3 \mathrm{c} \mathrm{n}^{2}$	$8 \mathrm{c} \mathrm{n}^{3}$	$64 \mathrm{c} \mathrm{n}^{3}$	
c 2^{n}	c 2^{n+1}	c $2^{2 n}$	c $2^{4 n}$	
2010 Stallman		alysis of Algorith		15

Slide by Matt Stallmann included with permission.

Comparison of Two Algorithms

insertion sort is $\mathrm{n}^{2} / 4$
merge sort is
$2 n \lg n$
sort a million items?
insertion sort takes roughly 70 hours
while merge sort takes roughly 40 seconds

This is a slow machine, but if 100 x as fast then it's 40 minutes versus less than 0.5 seconds

Constant Factors

Big-Oh Notation

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$) if there are positive constants c and n_{0} such that $f(n) \leq \boldsymbol{c g}(n)$ for $n \geq n_{0}$
- Example: $2 \boldsymbol{n}+10$ is $\boldsymbol{O}(\boldsymbol{n})$
- $2 \boldsymbol{n}+10 \leq \boldsymbol{c} \boldsymbol{n}$
- $(c-2) n \geq 10$
- $n \geq 10 /(c-2)$

- Pick $\boldsymbol{c}=3$ and $\boldsymbol{n}_{\mathbf{0}}=10$

Big-Oh Example

More Big-Oh Examples

-7n-2
$7 n-2$ is $O(n)$
need $c>0$ and $n_{0} \geq 1$ such that $7 n-2 \leq c \bullet n$ for $n \geq n_{0}$
this is true for $\mathrm{c}=7$ and $\mathrm{n}_{0}=1$
$-3 n^{3}+20 n^{2}+5$
$3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$
need $c>0$ and $n_{0} \geq 1$ such that $3 n^{3}+20 n^{2}+5 \leq c \bullet n^{3}$ for $n \geq n_{0}$ this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=21$

- $3 \log n+5$
$3 \log n+5$ is $O(\log n)$
need $\mathrm{c}>0$ and $\mathrm{n}_{0} \geq 1$ such that $3 \log \mathrm{n}+5 \leq \mathrm{c} \bullet \log \mathrm{n}$ for $\mathrm{n} \geq \mathrm{n}_{0}$ this is true for $\mathrm{c}=8$ and $\mathrm{n}_{0}=2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement " $f(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))^{\prime \prime}$ means that the growth rate of $f(\boldsymbol{n})$ is no more than the growth rate of $g(\boldsymbol{n})$
- We can use the big-Oh notation to rank functions according to their growth rate

	$f(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$	$\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))$
$\boldsymbol{g}(\boldsymbol{n})$ grows more	Yes	No
$f(\boldsymbol{n})$ grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

- If is $f(n)$ a polynomial of degree d, then $f(n)$ is $\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

- Use the smallest possible class of functions
- Say " $2 \boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $2 \boldsymbol{n}$ is $\boldsymbol{O}\left(n^{2}\right)^{\prime}$
- Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 \boldsymbol{n})$ "

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
- We find the worst-case number of primitive operations executed as a function of the input size
- We express this function with big-Oh notation
- Example:
- We determine that algorithm arrayMax executes at most $8 \boldsymbol{n}-2$ primitive operations
- We say that algorithm arrayMax "runs in $\boldsymbol{O}(\boldsymbol{n})$ time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The i-th prefix average of an array X is average of the first $(i+1)$ elements of X :

$$
A[i]=(X[0]+X[1]+\ldots+X[i]) /(i+1)
$$

- Computing the array A of prefix averages of another array X has applications to financial analysis

Prefix Averages (Quadratic)

- The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm prefixAverages1 (X, n)
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of \boldsymbol{X} \#operations $A \leftarrow$ new array of \boldsymbol{n} integers n

$$
\text { for } i \leftarrow 0 \text { to } n-1 \text { do }
$$

$$
s \leftarrow X[0]
$$

$$
n
$$

$$
\begin{array}{cc}
\text { for } j \leftarrow 1 \text { to } i \text { do } & 1+2+\ldots+(\boldsymbol{n}-1) \\
s \leftarrow s+X[j] & 1+2+\ldots+(\boldsymbol{n}-1) \\
A[i] \leftarrow s /(\boldsymbol{i}+1) & \boldsymbol{n} \\
\operatorname{mrn} A & 1
\end{array}
$$

return A

Arithmetic Progression

- The running time of prefixAverages 1 is $\boldsymbol{O}(1+2+\ldots+\boldsymbol{n})$
- The sum of the first n integers is $\boldsymbol{n}(\boldsymbol{n}+1) / 2$
- There is a simple visual proof of this fact
- Thus, algorithm prefixAverages 1 runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

Prefix Averages (Linear)

- The following algorithm computes prefix averages in linear time by keeping a running sum
$\operatorname{Algorithm}$ prefixAverages2(X, n)
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of $\boldsymbol{X} \quad$ \#operations
$A \leftarrow$ new array of \boldsymbol{n} integers $\quad \boldsymbol{n}$
$s \leftarrow 0 \quad 1$
for $i \leftarrow 0$ to $n-1$ do $\quad n$
$s \leftarrow s+X[i] \quad n$
$A[i] \leftarrow s /(i+1) \quad n$
return $A<1$
- Algorithm prefixAverages 2 runs in $\boldsymbol{O}(n)$ time

Math you need to Review

- Summations
- Logarithms and Exponents

- properties of logarithms:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b} x a=a \log _{b} x \\
& \log _{b} a=\log _{x} a \log _{x} b
\end{aligned}
$$

- properties of exponentials:

$$
\begin{aligned}
& a^{(b+c)}=a^{b} a^{c} \\
& a^{b c}=\left(a^{b}\right)^{c} \\
& a^{b} / a^{c}=a^{(b-c)} \\
& b=a^{\log _{a} b} \\
& b^{c}=a^{c} \log _{a} b
\end{aligned}
$$

Relatives of Big-Oh

- big-Omega

- $f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $\mathrm{n}_{0} \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_{0}$
- big-Theta
- $f(n)$ is $\Theta(g(n))$ if there are constants $c^{\prime}>0$ and $c^{\prime \prime}$ >0 and an integer constant $\mathrm{n}_{0} \geq 1$ such that $c^{\prime} \cdot g(n) \leq f(n) \leq c^{\prime \prime} \bullet g(n)$ for $n \geq n_{0}$

Intuition for Asymptotic Notation

Big-Oh

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$
big-Omega
- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$
big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$

Example Uses of the Relatives of Big-Oh

- $\boldsymbol{n n}^{\mathbf{2}}$ is $\Omega\left(\boldsymbol{n}^{\mathbf{2})}\right.$

$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c \bullet g(n)$ for $n \geq n_{0}$
let $c=5$ and $n_{0}=1$
- $\mathbf{5 n}^{\mathbf{2}}$ is $\Omega(\boldsymbol{n})$
$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $\mathrm{f}(n) \geq c \cdot g(n)$ for $n \geq n_{0}$
let $c=1$ and $n_{0}=1$
- $\boldsymbol{n}^{\mathbf{2}}$ is $\Theta\left(\boldsymbol{n}^{\mathbf{2}}\right)$
$f(n)$ is $\Theta(g(n))$ if it is $\Omega\left(n^{2}\right)$ and $O\left(n^{2}\right)$. We have already seen the former, for the latter recall that $f(n)$ is $O(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $\mathrm{f}(n) \leq c \bullet g(n)$ for $n \geq n_{0}$
Let $c=5$ and $n_{0}=1$

