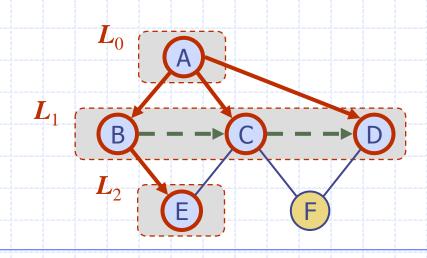
Breadth-First Search



Breadth-First Search

- Breadth-first search
 (BFS) is a general
 technique for traversing
 a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- BFS on a graph with n
 vertices and m edges
 takes O(n + m) time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

BFS Algorithm

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm **BFS**(**G**)

Input graph G

Output labeling of the edges and partition of the vertices of *G*

for all $u \in G.vertices()$

setLabel(u, UNEXPLORED)

for all $e \in G.edges()$

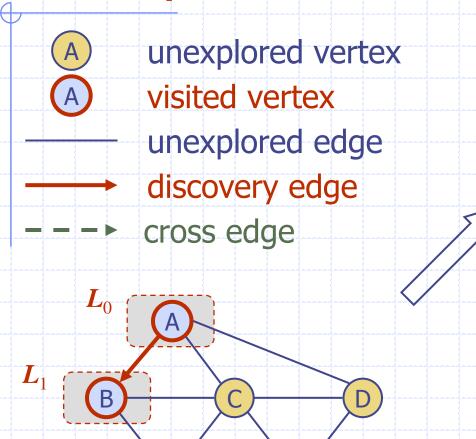
setLabel(e, UNEXPLORED)

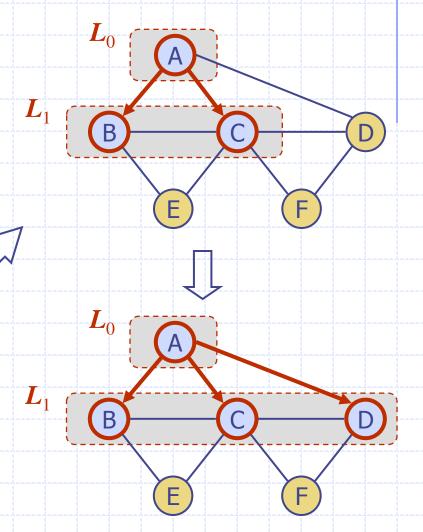
for all $v \in G.vertices()$

if getLabel(v) = UNEXPLOREDBFS(G, v)

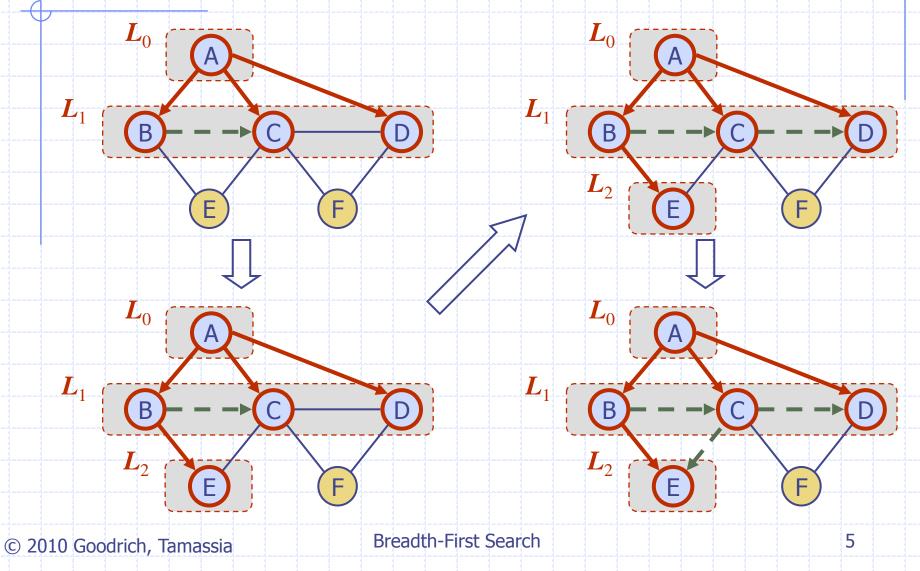
```
Algorithm BFS(G, s)
L_0 \leftarrow new empty sequence
L_0.addLast(s)
setLabel(s, VISITED)
i \leftarrow 0
while \neg L_i is Empty()
   L_{i+1} \leftarrow new empty sequence
   for all v \in L_i elements()
     for all e \in G.incidentEdges(v)
        if getLabel(e) = UNEXPLORED
           w \leftarrow opposite(v,e)
           if getLabel(w) = UNEXPLORED
              setLabel(e, DISCOVERY)
              setLabel(w, VISITED)
             L_{i+1}.addLast(w)
           else
              setLabel(e, CROSS)
   i \leftarrow i + 1
```

Example

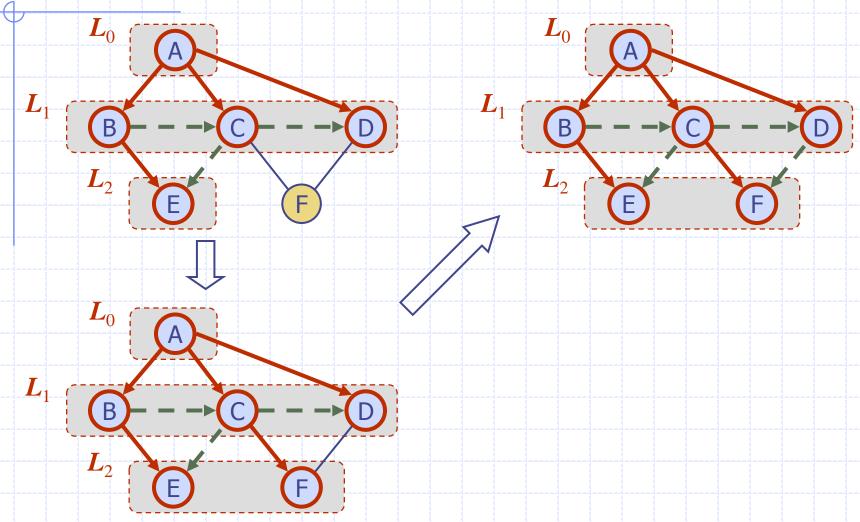




Example (cont.)



Example (cont.)



Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

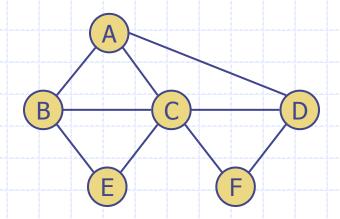
Property 2

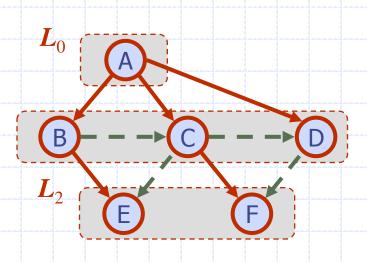
The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges





Analysis

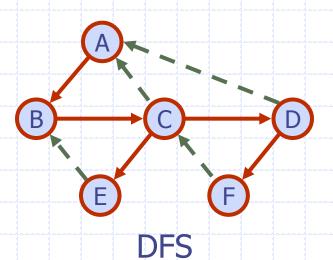
- \Box Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- \Box Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- ullet BFS runs in O(n+m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

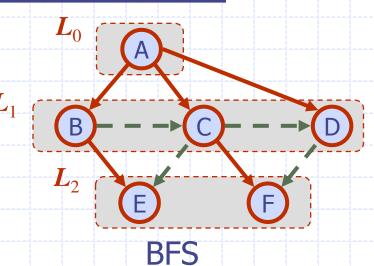
Applications

- using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

Applications	DFS	BFS
Spanning forest, con components, paths,		7
Shortest paths		~
Biconnected compor	nents 1	





Breadth-First Search

DFS vs. BFS (cont.)

Back edge (v, w)

w is an ancestor of v in the tree of discovery edges

Cross edge (v, w)

w is in the same level asv or in the next level

