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Digraphs

 A digraph is a graph 
whose edges are all 
directed
 Short for “directed graph”

 Applications

 one-way streets

 flights

 task scheduling
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Digraph Properties

 A graph G=(V,E) such that

 Each edge goes in one direction:

 Edge (a,b) goes from a to b, but not b to a

 If G is simple, m < n(n - 1)

 If we keep in-edges and out-edges in separate 
adjacency lists, we can perform listing of 
incoming edges and outgoing edges in time 
proportional to their size
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Digraph Application
 Scheduling: edge (a,b) means task a must be 

completed before b can be started

The good life
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Directed DFS

 We can specialize the traversal 
algorithms (DFS and BFS) to 
digraphs by traversing edges 
only along their direction

 In the directed DFS algorithm, 
we have four types of edges

 discovery edges

 back edges

 forward edges

 cross edges

 A directed DFS starting at a 
vertex s determines the vertices 
reachable from s
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Reachability

 DFS tree rooted at v: vertices reachable 
from v via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F



© 2010 Goodrich, Tamassia Directed Graphs 7

Strong Connectivity

 Each vertex can reach all other vertices
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 Pick a vertex v in G

 Perform a DFS from v in G

 If there’s a w not visited, print “no”

 Let G’ be G with edges reversed

 Perform a DFS from v in G’

 If there’s a w not visited, print “no”

 Else, print “yes”

 Running time: O(n+m)

Strong Connectivity 
Algorithm

G:

G’:
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 Maximal subgraphs such that each vertex can reach 
all other vertices in the subgraph

 Can also be done in O(n+m) time using DFS, but is 
more complicated (similar to biconnectivity).

Strongly Connected 
Components

{ a , c , g }

{ f , d , e , b }
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Transitive Closure

 Given a digraph G, the 
transitive closure of G is the 
digraph G* such that

 G* has the same vertices 
as G

 if G has a directed path 
from u to v (u  v), G*
has a directed edge from 
u to v

 The transitive closure 
provides reachability 
information about a digraph
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Computing the 
Transitive Closure
 We can perform 

DFS starting at 
each vertex

 O(n(n+m))

If there's a way to get  

from A to B and from        

B to C, then there's a        

way to get from A to C.

Alternatively ... Use 
dynamic programming: 
The Floyd-Warshall
Algorithm
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Floyd-Warshall 
Transitive Closure
 Idea #1: Number the vertices 1, 2, …, n.

 Idea #2: Consider paths that use only 
vertices numbered 1, 2, …, k, as 
intermediate vertices:

k

j

i

Uses only vertices
numbered 1,…,k-1

Uses only vertices
numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(add this edge if it’s not already in)
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Floyd-Warshall’s Algorithm
 Number vertices v1 , …, vn

 Compute digraphs G0, …, Gn

 G0=G

 Gk has directed edge (vi, vj) 

if G has a directed path 
from vi to vj with 

intermediate vertices in 
{v1 , …, vk}

 We have that Gn = G*

 In phase k, digraph Gk is 
computed from Gk - 1

 Running time: O(n3), 
assuming areAdjacent is O(1)

(e.g., adjacency matrix)

Algorithm FloydWarshall(G)

Input digraph G

Output transitive closure G* of G

i  1

for all v  G.vertices()

denote v as vi

i  i + 1

G0  G

for k  1 to n do

Gk  Gk - 1

for i  1 to n (i  k) do

for j  1 to n (j  i, k) do

if Gk - 1.areAdjacent(vi, vk) 
Gk - 1.areAdjacent(vk, vj)

if Gk.areAdjacent(vi, vj)

Gk.insertDirectedEdge(vi, vj , k)

return Gn
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Floyd-Warshall Example
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Floyd-Warshall, Iteration 1

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7



© 2010 Goodrich, Tamassia Directed Graphs 16

Floyd-Warshall, Iteration 2
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Floyd-Warshall, Iteration 3
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Floyd-Warshall, Iteration 4
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Floyd-Warshall, Iteration 5
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Floyd-Warshall, Iteration 6

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

BOS



© 2010 Goodrich, Tamassia Directed Graphs 21

Floyd-Warshall, Conclusion
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DAGs and Topological Ordering

 A directed acyclic graph (DAG) is a 
digraph that has no directed cycles

 A topological ordering of a digraph 
is a numbering 

v1 , …, vn

of the vertices such that for every 
edge (vi , vj), we have i < j

 Example: in a task scheduling 
digraph, a topological ordering a 
task sequence that satisfies the 
precedence constraints

Theorem

A digraph admits a topological 
ordering if and only if it is a DAG
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write c.s. program

play

Topological Sorting

 Number vertices, so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical student day1
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 Note: This algorithm is different than the 
one in the book

 Running time: O(n + m)

Algorithm for Topological Sorting

Algorithm TopologicalSort(G)

H  G // Temporary copy of G

n  G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges

Label v  n

n  n - 1

Remove v from H
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Implementation with DFS
 Simulate the algorithm by 

using depth-first search

 O(n+m) time.

Algorithm topologicalDFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the vertices of G
in the connected component of v

setLabel(v, VISITED)

for all e  G.outEdges(v) 
{ outgoing edges }

w  opposite(v,e)

if getLabel(w) = UNEXPLORED

{ e is a discovery edge }

topologicalDFS(G, w)

else

{ e is a forward or cross edge }

Label v with topological number n

n  n - 1

Algorithm topologicalDFS(G)

Input dag G

Output topological ordering of G
n  G.numVertices()

for all u  G.vertices()

setLabel(u, UNEXPLORED)

for all v  G.vertices()

if getLabel(v) = UNEXPLORED

topologicalDFS(G, v)
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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