

Digraphs

- A digraph is a graph whose edges are all directed
	- **Short for "directed graph"**
- Applications
	- one-way streets
	- **flights**
	- \blacksquare task scheduling

C

E

B

D

Digraph Properties

 \Box A graph G=(V,E) such that **Each edge goes in one direction: Edge (a,b) goes from a to b, but not b to a** If G is simple, $m < n(n-1)$ If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size A

C

E

B

D

Digraph Application

□ Scheduling: edge (a,b) means task a must be completed before b can be started

Directed DFS

- **The We can specialize the traversal** algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- \Box In the directed DFS algorithm, we have four types of edges
	- **discovery edges**
	- **back edges**
	- **forward edges**
	- cross edges
- A directed DFS starting at a vertex *s* determines the vertices reachable from *s*

Reachability

DFS tree rooted at v: vertices reachable from v via directed paths

Strong Connectivity

Each vertex can reach all other vertices

 Pick a vertex v in G Perform a DFS from v in G If there's a w not visited, print "no" Let G' be G with edges reversed Perform a DFS from v in G' If there's a w not visited, print "no" **Else, print "yes"** Running time: O(n+m) G: G': a f a

e

d

d

f

c

c

e

b

b

g

g

Strongly Connected **Components**

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in O(n+m) time using DFS, but is more complicated (similar to biconnectivity).

Transitive Closure

- Given a digraph *G*, the transitive closure of *G* is the digraph *G** such that
	- **G*** has the same vertices as *G*
	- **if G has a directed path** from *u* to $v(u \neq v)$, G^* has a directed edge from *u* to *v*
- The transitive closure provides reachability information about a digraph

Computing the Transitive Closure

- We can perform DFS starting at each vertex
	- $O(n(n+m))$

UWW.GENIUS

If there's a way to get from A to B and from B to C, then there's a way to get from A to C.

Alternatively ... Use dynamic programming: The Floyd-Warshall Algorithm

© 2010 Goodrich, Tamassia Directed Graphs 11

Floyd-Warshall Transitive Closure

- \Box Idea #1: Number the vertices 1, 2, ..., n.
- \Box Idea #2: Consider paths that use only vertices numbered 1, 2, …, k, as intermediate vertices:

Uses only vertices numbered 1,…,k (add this edge if it's not already in)

Uses only vertices numbered 1,…,k-1

i

j

Floyd-Warshall's Algorithm

- **a** Number vertices $v_1, ..., v_n$ Compute digraphs *G*⁰ *, …, Gⁿ*
	- $G_0 = G$ *G*_{*k*} has directed edge (v_i, v_j) if *G* has a directed path from v_i to v_j with intermediate vertices in $\{v_1, ..., v_k\}$
- \Box We have that $G_n = G^*$
- In phase *k*, digraph *G^k* is computed from G_{k-1}
- \Box Running time: $O(n^3)$, assuming areAdjacent is *O*(1) (e.g., adjacency matrix)
- **Algorithm** *FloydWarshall*(*G*) **Input** digraph *G* **Output** transitive closure *G** of *G* $i \leftarrow 1$ **for all** $v \in G$ *.vertices*() denote *v* as *vⁱ* $i \leftarrow i + 1$ $G_0 \leftarrow G$ **for** $k \leftarrow 1$ **to** *n* **do** $G_k \leftarrow G_{k-1}$ **for** $i \leftarrow 1$ **to** n ($i \neq k$) **do for** $j \leftarrow 1$ **to** $n \left(j \neq i, k \right)$ **do if** G_{k-1} *areAdjacent*(v_i , v_k) \wedge G_{k-1} .areAdjacent (v_k, v_j) **if** $\neg G_k$ are Adjacent(v_i , v_j) *Gk .insertDirectedEdge*(*vⁱ , vj , k*) **return** *Gn*

DAGs and Topological Ordering

 A directed acyclic graph (DAG) is a digraph that has no directed cycles A topological ordering of a digraph is a numbering v_1 , \ldots , v_n of the vertices such that for every edge (v_i, v_j) , we have $i < j$ **Example: in a task scheduling** digraph, a topological ordering a task sequence that satisfies the precedence constraints Theorem A digraph admits a topological ordering if and only if it is a DAG B A D C B D C v_1 $|v_2|$ v_{3} v_4

© 2010 Goodrich, Tamassia Directed Graphs 22

A

E

DAG *G*

E

*v*5

Topological

ordering of *G*

Topological Sorting

 \Box Number vertices, so that (u,v) in E implies $u < v$

Algorithm for Topological Sorting

□ Note: This algorithm is different than the one in the book

> **Algorithm** TopologicalSort(*G*) $H \leftarrow G$ // Temporary copy of *G* $n \leftarrow G$.*numVertices* $()$ **while** H is not empty **do** Let ν be a vertex with no outgoing edges Label $v \leftarrow n$ $n \leftarrow n-1$ Remove *v* from *H*

\Box Running time: $O(n + m)$

© 2010 Goodrich, Tamassia Directed Graphs 24

Implementation with DFS

- Simulate the algorithm by using depth-first search
- $O(n+m)$ time.

Algorithm *topologicalDFS*(*G*)

Input dag *G*

Output topological ordering of *G* $n \leftarrow G$.num Vertices() **for all** $u \in G$ *.vertices* $()$ *setLabel*(*u, UNEXPLORED*) **for all** $v \in G$ *.vertices* $()$ **if** *getLabel*(*v*) = *UNEXPLORED topologicalDFS*(*G, v*)

Algorithm *topologicalDFS*(*G, v*) **Input** graph *G* and a start vertex *v* of *G* **Output** labeling of the vertices of *G* in the connected component of *v setLabel*(*v, VISITED*) **for all** $e \in G$.*outEdges*(*v*) **{** outgoing edges **}** $w \leftarrow \text{opposite}(v, e)$ **if** *getLabel*(*w*) = *UNEXPLORED* **{** *e* is a discovery edge **}** *topologicalDFS*(*G, w*) **else {** *e* is a forward or cross edge **}**

Label *v* with topological number *n*

 $n \leftarrow n - 1$

© 2010 Goodrich, Tamassia Directed Graphs 29

© 2010 Goodrich, Tamassia Directed Graphs 34

