
© 2010 Goodrich, Tamassia Directed Graphs 1

Directed Graphs

JFK

BOS

MIA

ORD

LAX
DFW

SFO

© 2010 Goodrich, Tamassia Directed Graphs 2

Digraphs

 A digraph is a graph
whose edges are all
directed
 Short for “directed graph”

 Applications

 one-way streets

 flights

 task scheduling
A

C

E

B

D

© 2010 Goodrich, Tamassia Directed Graphs 3

Digraph Properties

 A graph G=(V,E) such that

 Each edge goes in one direction:

 Edge (a,b) goes from a to b, but not b to a

 If G is simple, m < n(n - 1)

 If we keep in-edges and out-edges in separate
adjacency lists, we can perform listing of
incoming edges and outgoing edges in time
proportional to their size

A

C

E

B

D

© 2010 Goodrich, Tamassia Directed Graphs 4

Digraph Application
 Scheduling: edge (a,b) means task a must be

completed before b can be started

The good life

ics141ics131 ics121

ics53 ics52ics51

ics23ics22ics21

ics161

ics151

ics171

© 2010 Goodrich, Tamassia Directed Graphs 5

Directed DFS

 We can specialize the traversal
algorithms (DFS and BFS) to
digraphs by traversing edges
only along their direction

 In the directed DFS algorithm,
we have four types of edges

 discovery edges

 back edges

 forward edges

 cross edges

 A directed DFS starting at a
vertex s determines the vertices
reachable from s

A

C

E

B

D

© 2010 Goodrich, Tamassia Directed Graphs 6

Reachability

 DFS tree rooted at v: vertices reachable
from v via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F

© 2010 Goodrich, Tamassia Directed Graphs 7

Strong Connectivity

 Each vertex can reach all other vertices

a

d

c

b

e

f

g

© 2010 Goodrich, Tamassia Directed Graphs 8

 Pick a vertex v in G

 Perform a DFS from v in G

 If there’s a w not visited, print “no”

 Let G’ be G with edges reversed

 Perform a DFS from v in G’

 If there’s a w not visited, print “no”

 Else, print “yes”

 Running time: O(n+m)

Strong Connectivity
Algorithm

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g

© 2010 Goodrich, Tamassia Directed Graphs 9

 Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph

 Can also be done in O(n+m) time using DFS, but is
more complicated (similar to biconnectivity).

Strongly Connected
Components

{ a , c , g }

{ f , d , e , b }

a

d

c

b

e

f

g

© 2010 Goodrich, Tamassia Directed Graphs 10

Transitive Closure

 Given a digraph G, the
transitive closure of G is the
digraph G* such that

 G* has the same vertices
as G

 if G has a directed path
from u to v (u v), G*
has a directed edge from
u to v

 The transitive closure
provides reachability
information about a digraph

B

A

D

C

E

B

A

D

C

E

G

G*

© 2010 Goodrich, Tamassia Directed Graphs 11

Computing the
Transitive Closure
 We can perform

DFS starting at
each vertex

 O(n(n+m))

If there's a way to get

from A to B and from

B to C, then there's a

way to get from A to C.

Alternatively ... Use
dynamic programming:
The Floyd-Warshall
Algorithm

© 2010 Goodrich, Tamassia Directed Graphs 12

Floyd-Warshall
Transitive Closure
 Idea #1: Number the vertices 1, 2, …, n.

 Idea #2: Consider paths that use only
vertices numbered 1, 2, …, k, as
intermediate vertices:

k

j

i

Uses only vertices
numbered 1,…,k-1

Uses only vertices
numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(add this edge if it’s not already in)

© 2010 Goodrich, Tamassia Directed Graphs 13

Floyd-Warshall’s Algorithm
 Number vertices v1 , …, vn

 Compute digraphs G0, …, Gn

 G0=G

 Gk has directed edge (vi, vj)

if G has a directed path
from vi to vj with

intermediate vertices in
{v1 , …, vk}

 We have that Gn = G*

 In phase k, digraph Gk is
computed from Gk - 1

 Running time: O(n3),
assuming areAdjacent is O(1)

(e.g., adjacency matrix)

Algorithm FloydWarshall(G)

Input digraph G

Output transitive closure G* of G

i 1

for all v G.vertices()

denote v as vi

i i + 1

G0 G

for k 1 to n do

Gk Gk - 1

for i 1 to n (i k) do

for j 1 to n (j i, k) do

if Gk - 1.areAdjacent(vi, vk)
Gk - 1.areAdjacent(vk, vj)

if Gk.areAdjacent(vi, vj)

Gk.insertDirectedEdge(vi, vj , k)

return Gn

© 2010 Goodrich, Tamassia Directed Graphs 14

Floyd-Warshall Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

© 2010 Goodrich, Tamassia Directed Graphs 15

Floyd-Warshall, Iteration 1

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

© 2010 Goodrich, Tamassia Directed Graphs 16

Floyd-Warshall, Iteration 2

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

© 2010 Goodrich, Tamassia Directed Graphs 17

Floyd-Warshall, Iteration 3

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

© 2010 Goodrich, Tamassia Directed Graphs 18

Floyd-Warshall, Iteration 4

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

© 2010 Goodrich, Tamassia Directed Graphs 19

Floyd-Warshall, Iteration 5

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

BOS

© 2010 Goodrich, Tamassia Directed Graphs 20

Floyd-Warshall, Iteration 6

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

BOS

© 2010 Goodrich, Tamassia Directed Graphs 21

Floyd-Warshall, Conclusion

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

BOS

© 2010 Goodrich, Tamassia Directed Graphs 22

DAGs and Topological Ordering

 A directed acyclic graph (DAG) is a
digraph that has no directed cycles

 A topological ordering of a digraph
is a numbering

v1 , …, vn

of the vertices such that for every
edge (vi , vj), we have i < j

 Example: in a task scheduling
digraph, a topological ordering a
task sequence that satisfies the
precedence constraints

Theorem

A digraph admits a topological
ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological
ordering of G

v1

v2

v3

v4 v5

© 2010 Goodrich, Tamassia Directed Graphs 23

write c.s. program

play

Topological Sorting

 Number vertices, so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical student day1

2 3

4 5

6

7

8

9

10
11

bake cookies

© 2010 Goodrich, Tamassia Directed Graphs 24

 Note: This algorithm is different than the
one in the book

 Running time: O(n + m)

Algorithm for Topological Sorting

Algorithm TopologicalSort(G)

H G // Temporary copy of G

n G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges

Label v n

n n - 1

Remove v from H

© 2010 Goodrich, Tamassia Directed Graphs 25

Implementation with DFS
 Simulate the algorithm by

using depth-first search

 O(n+m) time.

Algorithm topologicalDFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the vertices of G
in the connected component of v

setLabel(v, VISITED)

for all e G.outEdges(v)
{ outgoing edges }

w opposite(v,e)

if getLabel(w) = UNEXPLORED

{ e is a discovery edge }

topologicalDFS(G, w)

else

{ e is a forward or cross edge }

Label v with topological number n

n n - 1

Algorithm topologicalDFS(G)

Input dag G

Output topological ordering of G
n G.numVertices()

for all u G.vertices()

setLabel(u, UNEXPLORED)

for all v G.vertices()

if getLabel(v) = UNEXPLORED

topologicalDFS(G, v)

© 2010 Goodrich, Tamassia Directed Graphs 26

Topological Sorting Example

© 2010 Goodrich, Tamassia Directed Graphs 27

Topological Sorting Example

9

© 2010 Goodrich, Tamassia Directed Graphs 28

Topological Sorting Example

8

9

© 2010 Goodrich, Tamassia Directed Graphs 29

Topological Sorting Example

7

8

9

© 2010 Goodrich, Tamassia Directed Graphs 30

Topological Sorting Example

7

8

6

9

© 2010 Goodrich, Tamassia Directed Graphs 31

Topological Sorting Example

7

8

56

9

© 2010 Goodrich, Tamassia Directed Graphs 32

Topological Sorting Example

7

4

8

56

9

© 2010 Goodrich, Tamassia Directed Graphs 33

Topological Sorting Example

7

4

8

56

3

9

© 2010 Goodrich, Tamassia Directed Graphs 34

Topological Sorting Example

2

7

4

8

56

3

9

© 2010 Goodrich, Tamassia Directed Graphs 35

Topological Sorting Example

2

7

4

8

56

1

3

9

